Ce travail s'inscrit dans la lignée des problèmes inverses en mécanique des milieux continus et plus précisément en élasticité. L'approche I-FEM (Inverse Finite Element Method) est basée sur la méthode des éléments finis. Les propriétés mécaniques (i.e. le module d'Young et le coefficient de Poisson) sont discrétisées aux noeuds de l'élément fini. Pour cela on a adapté la méthode des éléments finis étendus afin de modéliser la discontinuité des propriétés mécaniques. Le développement de ce nouveau code de calculs éléments finis sera présenté. La méthode sera illustrée par la présentation des cartographies d'élasticité de plaques d'athérome reconstruites avec succès.
Dans cet exposé, on considérera des écoulements air/eau. On travaille à nombre de Mach faible et avec un fort ratio de densité entre les deux phases. On présentera un schéma numérique Lagrange-projection robuste pour résoudre les équations de mélange, couplé à une phase de projection faiblement diffusive pour l'advection de la fraction massique de gaz. Ensuite, des comparaisons à la fois avec d'autres codes et des résultats expérimentaux seront effectuées sur divers cas de rupture de barrage et de sloshing.
Au cours de cet exposé je présenterai des méthodes numériques pour la résolution 3D du problème de Stokes, pour des fluides non homogènes qui interagissent avec des obstacles déformables. En particulier je m'intéresse à des fluides dont la viscosité n'est pas uniforme: elle dépend de la fraction massique d'un certain composant du fluide. D'un point de vue mathématique, il s'agit de résoudre un problème elliptique couplé à une équation de convection-diffusion, ce qui génère une dynamique d'écoulement non linéaire. L'algorithme de résolution est basé sur une discrétisation hybride grille-particules et des algorithmes à pas fractionnaires. Cela permet de séparer la résolution de la convection de manière lagrangienne et la résolution de la diffusion de manière eulérienne. Une méthode de projection itérative garanti l'incompressibilité de l'écoulement même près des bords, où l'erreur est traditionnellement localisée. L'interaction entre le fluide et les obstacles est gérée à l'aide de la méthode de pénalisation. Une méthode de résolution originale permet de traiter ces termes de pénalisation de manière implicite en utilisant des solveurs rapides sur grilles cartésiennes, ce qui est particulièrement adaptés pour les calculs 3D de grande dimension (en terme de temps de calcul et d'occupation mémoire). Ce travail s'inscrit dans le contexte de l'étude de l'écoulement du mucus pulmonaire autour des cellules épithéliales ciliées qui tapissent les bronches, assurant la capture et l'expectoration des agents pathogènes. L'efficacité du transport du mucus est étudiée en fonction des paramètres biologiques. D'autres simulations d'un micro-nageur et d'écoulements en milieux poreux compléteront cette présentation.
Dans cet exposé on s'intéresse au couplage de modèles à dimensions spatiales hétérogènes. Dans un premier temps je présente un cas académique de couplage 1-D/2-D dans le cadre elliptique. Je commence par définir les opérateurs de restriction et d'extension nécessaires à l'analyse en se basant sur la dérivation du modèle 1-D à partir du modèle 2-D. Après cela, je présente un algorithme de couplage de type Schwarz avec des conditions de type Robin. Je montre alors la convergence de cet algorithme, plus particulièrement sa convergence optimale en utilisant l'opérateur absorbant exact 1-D. Je termine cette partie en établissant une majoration de l'erreur entre la solution couplée et la solution globale de référence en fonction du rapport d'aspect du domaine d'étude et de la position de l'interface de couplage. Ces résultats seront illustrés numériquement. Dans la deuxième partie, je généralise cette analyse mathématique au cas du couplage des systèmes linéaires de Saint-Venant 2-D et de Navier-Stokes hydrostatiques 3-D. En faisant l'hypothèse d'une friction nulle au fond, je montre que la convergence de l'algorithme de couplage est équivalente à celle de l'algorithme usuel de décomposition de domaine du Système de Saint-Venant. Je propose alors un algorithme avec des conditions de type Robin, dont je montre la convergence. Enfin, je présente une première étude d'un cas test réel de couplage des systèmes de Saint-Venant 1-D et Navier-Stokes 3-D en utilisant les codes numériques Mascaret 1-D et Telemac 3-D développés par EDF R&D.
I will present a model of motion of compressible mixture of chemically reacting species. Mathematical description of such flow leads to a hyperbolic deviation in the species mass conservation equations (the full Maxwell-Stefan system). The thermodynamics implies that the diffusion terms are non-symmetric, non positively defined, and cross-diffusion effects must be strongly marked. We consider a special form of degenerate density-dependent viscosity coefficients and a singular behavior of the cold component of the internal pressure near vacuum. Under these hypotheses we prove global-in-time existence of weak solutions. This result is based on several joint papers with P.B. Mucha and M. Pokorny.
Alvaro MATEOS GONZALES : Méthodes d'entropie pour une équation de renouvellement. Dans le cadre de la sous-diffusion intracellulaire, nous nous intéressons à une équation de renouvellement en âge, à sauts en espace, nous présentons une preuve de la convergence de la solution vers l'état stationnaire, partant d'un changement d'échelle autosimilaire. Un lemme permettant de comparer des dissipations d'entropie par rapport à des mesures absolument continues l'une par rapport à l'autre, puis une inégalité d'entropie comparant la solution à une sur-solution qui converge vers l'état stationnaire, permettront de conclure. Charlotte PERRIN : Existence de solutions pour le système de Navier-Stokes-Korteweg. Cet exposé se base sur un article récent de Pierre Germain et Philippe G. LeFloch, The finite energy method for compressible fluids, the Navier-Stokes-Korteweg model (2012). On étudiera la question de l'existence de solutions d'énergie finie pour le système d'équations de NS Korteweg, équations qui modélisent l'écoulement isentropique d'un fluide compressible soumis à des forces de viscosité et de capillarité. Cet exposé a pour but d'introduire quelques unes des principales techniques pour l'étude des fluides compressibles : estimations d'énergie, d'entropie, lemmes de compacité, phénomènes de cavitation, ...
Dans cet exposé nous nous intéressons au Laplacien magnétique semi-classique dans des domaines polyédraux de dimension 3. Motivés par le phénomène de supraconductivité de surface pour des champs magnétiques de grande intensité, nous cherchons à déterminer le comportement asymptotique de la première valeur propre lorsque le paramètre semi-classique tend vers 0. Nous montrons que le comportement de la première valeur propre est gouverné par une hiérarchie de problèmes modèles définis sur les cônes tangents au domaine. Nous obtenons le premier terme de l'asymptotique de la première valeur propre ainsi qu'une estimation du reste. Il s'agit d'un travail en collaboration avec Monique Dauge et Virginie Bonnaillie-Noël
I will present some results in collaboration with G. Francfort concerning quasi-static evolutions for linearly-elastic perfectly-plastic for multi-phase materials. The mathematical framework adopted is that of the variational approach to rate independent evolutions formalized by A. Mielke and his collaborators. The focus is on the dissipation properties of the interfaces which leads to lower semicontinuity problems in the space of Radon measures.
Le but de cet exposé consiste à développer des méthodes numériques performantes et robustes destinées à résoudre numériquement des problèmes de type diffraction d'ondes (acoustique ou électromagnétique) en régime harmonique à haute fréquence. Il est connu que les systèmes linéaires issus de la discrétisation de tels problèmes par des méthodes d'éléments finis standard sont hautement non définis positifs. En pratique, ils font diverger les solveurs préconditionnés de Krylov (comme le GMRES par exemple). Le but de l'exposé est de développer une méthode alternative, la méthode de décomposition de domaine, et de voir comment l'analyse microlocale joue un rôle crucial pour obtenir des solveurs robustes et efficaces. Plusieurs exemples numériques 2d-3d seront donnés, notamment sur des problèmes de grande taille, la méthode étant adaptée au calcul parallèle. Ces travaux font l'objet de collaborations avec C. Geuzaine, B. Thierry (Université de Liège), M. El Bouajaji (IECN) et Yassine Boubendir (NJIT, USA).
Dans cette exposé je vais présenter des résultats concernant les problèmes de Gel'fand-Calderon et de conductivité inverse (problème de Calderon). Il s'agit de deux problèmes inverses de valeurs au bord avec différents applications, notamment dans le domaine médicale, géophysique et dans la tomographie océanique. Le problème de Calderon consiste à déterminer une conductivité électrique dans un domaine à partir de l'opérateur tension-à-courant (Dirichlet-to-Neumann) au bord. Dans le problème de Gel'fand-Calderon la quantité à reconstruire est un potentiel dans l'équation de Schrodinger, étant donné l'opérateur Dirichlet-to-Neumann associé à énergie fixée. Je vais présenter le premier résultat de stabilité globale en dimension deux pour le problème de Gel'fand-Calderon scalaire et multi-canal (matriciel). Ensuite je vais parler d'un algorithme de reconstruction stable et rapidement convergent pour le même problème dans le cas 2D multi-canal, avec applications à l'étude du problème en 3D . Comme derniers résultats je vais montrer des nouvelles estimations de stabilité globale pour les deux problèmes qui dépendent explicitement de la régularité et de l'énergie. J'expliquerai notamment comment la stabilité augment à hautes énergies.
Le but de cet exposé est de présenter quelques méthodes numériques dédiées à la simulation de fluides complexes en général et des écoulements sanguins en particulier. Je présenterai d'abord une nouvelle formulation point-selle de la méthode de la frontière élargie ainsi qu'une modélisation des globules rouges en utilisant une méthode Level Set. Ensuite, je présenterai des simulations numériques d'écoulements fluides dans des géométries réelles de vaisseaux sanguins. Ces travaux s'effectuent dans le cadre de l'ANR VIVABRAIN (http://icube-vivabrain.unistra.fr) et dans le cadre du développement de la librairie FEEL++ (http://www.feelpp.org/)
Le périmètre anisotrope mesure différemment les parties du bord, en rapport avec leur orientation. Par conséquence, les frontières des formes minimisant le périmètre anisotrope sous contrainte de volume vont avoir certaines directions privilégiées. La question est de trouver numériquement des partitions d'un ouvert en cellules d'aire prescrite, et qui minimise la somme des périmètres anisotropes des cellules. Les résultats numériques sont basés sur une approche par Gamma convergence, généralisant le théorème de Modica-Mortola en anisotrope/multiphase.
``The Elo rating system is a method for calculating the relative skill levels of players in two-player games such as chess'' (Wikipedia). This system is widely used to rank sport teams, online games, journals for instance. The Elo model studied is a Markov chain. When the players are numerous and interact a lot we derive a new continuous model: a kinetic equation with a mean field velocity. The asymptotic behavior of the ratings for large time, which is an important issue for the validity of the rating system, is studied. The idealistic case when all players are compared yields an exponential rate to the true rating independently of the initial rating. The realistic and complex case with only local interactions has several equilibria. The convergence holds to an equilibrium depending on the intial ratings but with no rate. What does it mean for this rating system? Some consequences and some open problems will be given.
Les champs à divergence nulle ne peuvent conserver leur topologie de lignes de champs, lorsqu'ils sont diffusés par l'équation de la chaleur linéaire. Des équations de diffusion conservant la topologie, très non-linéaires, ont été proposées, notamment par H.K. Moffatt sous le nom de relaxation magnétique''. Elles ont pour solutions d'équilibre une classe très riche: à savoir toutes les solutions stationnaires des équations d'Euler des fluides incompressibles. En mélangeant des idées d'Ambrosio-Gigli-Savaré pour l'équation de la chaleur scalaire et la notion de solution dissipative des équations d'Euler proposée par P.-L. Lions, on parvient à définir un concept de
solution dissipative'' pour la relaxation magnétique vers Euler, avec un théorème d'unicité ``fort-faible'' à la clef et d'existence globale de solutions.