By clustering the polar curves of 2-variable function germs, in the Topological category, one may derive a bijective correspondence of a certain partition of polar quotients. In the case of the Lipschitz category, we explain how this bijective correspondence may be refined in terms of the gradient canyons. We will show how the tracking of the contact orders of the polar arcs and of the roots of a holomorphic 2-variable germ, induces a natural partition of the set of polar arcs into clusters, in such a way that the classical bijective correspondence of branches of topologically right-equivalent function germs induces a bijective correspondence of those clusters. (Clustering polar curves, Topology and its Applications 313 (2022) with P. Migus and M. Tibar.)
Je vais expliquer une nouvelle preuve d'un théorème de Gabrielov des années 70 concernant le rang d'un germe d'application analytique. Ceci nous permet d'obtenir un résultat plus général que le résultat original de Gabrielov. Je vais montrer ensuite comment cet énoncé nous permet de montrer que l'ensemble des points Nash d'un ensemble sous-analytique est lui-même un ensemble sous-analytique, résultat démontré en 90 par Pawlucki.
Let X, Y be nonsingular real algebraic sets. A map φ : X → Y is said to be k- regulous, where k is a nonnegative integer, if it is of class Ck and the restriction of φ to some Zariski open dense subset of X is a regular map. Assuming that Y is uniformly rational, and k ≥ 1, we prove that a C∞ map f : X → Y can be approximated by k-regulous maps in the Ck topology if and only if f is homotopic to a k-regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking Y = Sp (the unit p-dimensional sphere), we obtain several new results on approximation of C∞ maps from X into Sp by k-regulous maps in the Ck topology, for k ≥ 0
Let X, Y be nonsingular real algebraic sets. A map φ : X → Y is said to be k- regulous, where k is a nonnegative integer, if it is of class Ck and the restriction of φ to some Zariski open dense subset of X is a regular map. Assuming that Y is uniformly rational, and k ≥ 1, we prove that a C∞ map f : X → Y can be approximated by k-regulous maps in the Ck topology if and only if f is homotopic to a k-regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking Y = Sp (the unit p-dimensional sphere), we obtain several new results on approximation of C∞ maps from X into Sp by k-regulous maps in the Ck topology, for k ≥ 0
Depuis Fuchs, on sait associer à une équation différentielle linéaire homogène sur le corps des séries formelles $mathbb{C}((t))$ des exposants. Un nombre complexe $a$ est un exposant de l'équation s'il existe une série formelle $f(t)$ telle que l'équation ait une solution (symbolique) de la forme $t^a cdot f(t)$, où $t^a$ est juste un symbole. Ces nombres aident dans la classification de ces équations. Plus précisément, leur classe modulo les entiers, sont des invariants par isomorphismes du module différentiel associé à l'équation donnée. On rencontre toutefois un problème : si l'ordre de notre équation est $n$, le nombre d'exposants dans $mathbb{C}/mathbb{Z}$ est inférieur ou égal à $n$. En effet, les équations différentielles sur $mathbb{C}((t))$ sont complètement classifiées par la théorie de Galois différentielle et les exposants sont des classifiants (presque complets) de la classe d'isomorphisme de la partie régulière des modules différentiels. Pour les modules irréguliers sans partie régulière il n'y a pas d'exposants. Dans l'exposé on verra qu'en réalité on peut prolonger la théorie des exposants aux modules irréguliers par une méthode qui fait intervenir les groupes de Galois différentiels (ou plus précisément Tannakiens). Cela traduit l'idée qu'une solution générale d'une équation irrégulière est encore de la forme $t^a cdot f(t)$ modulo multiplication ultérieure par des fonctions exponentielles de la forme $exp(q(t))$ et des logarithmes $log(t)$ (théorème de Turrittin). Si le temps le permet, je vais également présenter en quelque mot comment cette méthode fonctionne aussi bien dans certains contextes spécifiques du monde $p$-adiques, qui présentent une forte analogie avec les séries formelles. Notamment, la même méthode permet d'obtenir une théorie des exposants p-adiques pour les équations différentielles, irrégulières ou pas, avec structure de Frobenius sur l'anneau de Robba (théorème de monodromie locale $p$-adique). Travail en collaboration avec M.D'addezio, C.Lazda, A.Pal
Depuis Fuchs, on sait associer à une équation différentielle linéaire homogène sur le corps des séries formelles $mathbb{C}((t))$ des exposants. Un nombre complexe $a$ est un exposant de l'équation s'il existe une série formelle $f(t)$ telle que l'équation ait une solution (symbolique) de la forme $t^a cdot f(t)$, où $t^a$ est juste un symbole. Ces nombres aident dans la classification de ces équations. Plus précisément, leur classe modulo les entiers, sont des invariants par isomorphismes du module différentiel associé à l'équation donnée. On rencontre toutefois un problème : si l'ordre de notre équation est $n$, le nombre d'exposants dans $mathbb{C}/mathbb{Z}$ est inférieur ou égal à $n$. En effet, les équations différentielles sur $mathbb{C}((t))$ sont complètement classifiées par la théorie de Galois différentielle et les exposants sont des classifiants (presque complets) de la classe d'isomorphisme de la partie régulière des modules différentiels. Pour les modules irréguliers sans partie régulière il n'y a pas d'exposants. Dans l'exposé on verra qu'en réalité on peut prolonger la théorie des exposants aux modules irréguliers par une méthode qui fait intervenir les groupes de Galois différentiels (ou plus précisément Tannakiens). Cela traduit l'idée qu'une solution générale d'une équation irrégulière est encore de la forme $t^a cdot f(t)$ modulo multiplication ultérieure par des fonctions exponentielles de la forme $exp(q(t))$ et des logarithmes $log(t)$ (théorème de Turrittin). Si le temps le permet, je vais également présenter en quelque mot comment cette méthode fonctionne aussi bien dans certains contextes spécifiques du monde $p$-adiques, qui présentent une forte analogie avec les séries formelles. Notamment, la même méthode permet d'obtenir une théorie des exposants p-adiques pour les équations différentielles, irrégulières ou pas, avec structure de Frobenius sur l'anneau de Robba (théorème de monodromie locale $p$-adique). Travail en collaboration avec M.D'addezio, C.Lazda, A.Pal
We give an explicit positive answer, in the case of reduced curve singularities, to a question of B. Teissier about the existence of a toric embedded resolution after reembedding. In the case of a curve singularity (C, O) contained in a non singular surface S such a reembedding may be defined in terms of a sequence of maximal contact curves of the minimal embedded resolution of C. We prove that there exists a toric modification, after reembedding, which provides an embedded resolution of C. We use properties of the semivaluation space of S at O to describe how the dual graph of the minimal embedded resolution of C may be seen on the local tropicalization of S associated to this reembedding. This is a joint work with Hussein Mourtada and Ana Belén de Felipe.
Dans cet exposé, je vais vous raconter comment à des polytopes suffisamment sympathiques et à d'autres objets combinatoires on a associé des variétés complexes qui leur ressemblent, comment cela a permis d'élucider des propriétés remarquables de ces objets via la théorie de Hodge classique (qui étudie la structure cohomologique des variétés complexes), comment, lorsque ces objets ne sont plus si sympathiques, il a fallu développer la théorie de Hodge combinatoire en faisant comme si une variété complexe adéquate était associée à ces objets, et comment, en réalité, on peut bien leur associer une variété adéquate mais une variété tropicale. Ce sera l'occasion de (re)découvrir polytopes, variétés toriques, matroïdes, éventails, théories de Hodge, hypercorps tropical, etc.
Dans cet exposé, je vais vous raconter comment à des polytopes suffisamment sympathiques et à d'autres objets combinatoires on a associé des variétés complexes qui leur ressemblent, comment cela a permis d'élucider des propriétés remarquables de ces objets via la théorie de Hodge classique (qui étudie la structure cohomologique des variétés complexes), comment, lorsque ces objets ne sont plus si sympathiques, il a fallu développer la théorie de Hodge combinatoire en faisant comme si une variété complexe adéquate était associée à ces objets, et comment, en réalité, on peut bien leur associer une variété adéquate mais une variété tropicale. Ce sera l'occasion de (re)découvrir polytopes, variétés toriques, matroïdes, éventails, théories de Hodge, hypercorps tropical, etc.
Artin et Pfister ont démontré que tout polynôme réel en n variables qui ne prend que des valeurs >=0 est somme de 2^n carrés de fonctions rationnelles. Après une introduction générale à cette thématique (le dix-septième problème de Hilbert), je présenterai des extensions de ce théorème à des corps de séries formelles ou de fonctions analytiques.
Une équation différentielle algébrique est fortement minimale si tout sous-ensemble définissable de son ensemble de solutions (considéré dans un corps différentiel universel dans le langage des corps différentiel) est fini ou cofini. Dans mon exposé, je commencerai par présenter cette notion, son histoire et sa relation avec des énoncés de transcendence pour les solutions d’équations différentielles algébriques non linéaires. Je présenterai ensuite un résultat d’abondance pour les équations différentielles autonomes fortement minimales.
Une équation différentielle algébrique est fortement minimale si tout sous-ensemble définissable de son ensemble de solutions (considéré dans un corps différentiel universel dans le langage des corps différentiel) est fini ou cofini. Dans mon exposé, je commencerai par présenter cette notion, son histoire et sa relation avec des énoncés de transcendence pour les solutions d’équations différentielles algébriques non linéaires. Je présenterai ensuite un résultat d’abondance pour les équations différentielles autonomes fortement minimales.
Soit (K, ν) un corps valué, les notions de valuation augmentée, de valuation augmentée limite et de famille admise de valuations permettent de donner une description de toute valuation μ de K[x] prolongeant ν. Dans le cas où le corps K est algébriquement clos cette description est particulièrement simple et nous pouvons la réduire aux notions de paire minimale et de famille pseudo-convergente. Soient (K, ν) un corps valué hensélien et ν' l’unique extension de ν à la clôture algébrique ̄K de K et soit μ une valuation de K[x] prolongeant ν, nous étudions les extensions ̄μ de μ à ̄K[x] et nous donnons une description des valuations ̄μ_i de ̄K[x] qui sont les extensions des valuations μ_i appartenant à la famille admise associée à μ.
Un problème classique dû à Abel est de déterminer si une équation différentielle y′ = ηy admet une solution non triviale y algébrique sur C(x) lorsque η est une fonction algébrique donnée sur C(x). Risch a produit un algorithme qui, étant donné η, détermine s'il existe une solution algébrique ou non. Dans un travail en commun avec Eric Delaygue (Lyon), nous avons donné un point de vue différent lorsque η admet un développement de Puiseux à coefficients rationnels en 0 : il existe une solution algébrique non triviale de y′=ηy si et seulement si les coefficients du développement de Puiseux de η en 0 satisfont les congruences de Gauss pour presque tous les nombres premiers. Nous avons appliqué notre critère afin de déterminer complètement les équations y′=ηy avec une solution algébrique lorsque xη(x) est une série hypergéométrique algébrique à paramètres rationnels, ce qui nous a permis de prouver une prédiction de Golyshev.
Un problème classique dû à Abel est de déterminer si une équation différentielle y′ = ηy admet une solution non triviale y algébrique sur C(x) lorsque η est une fonction algébrique donnée sur C(x). Risch a produit un algorithme qui, étant donné η, détermine s'il existe une solution algébrique ou non. Dans un travail en commun avec Eric Delaygue (Lyon), nous avons donné un point de vue différent lorsque η admet un développement de Puiseux à coefficients rationnels en 0 : il existe une solution algébrique non triviale de y′=ηy si et seulement si les coefficients du développement de Puiseux de η en 0 satisfont les congruences de Gauss pour presque tous les nombres premiers. Nous avons appliqué notre critère afin de déterminer complètement les équations y′=ηy avec une solution algébrique lorsque xη(x) est une série hypergéométrique algébrique à paramètres rationnels, ce qui nous a permis de prouver une prédiction de Golyshev.
Nous rappellerons quelques tenants et aboutissants de l'étude des familles d'arcs sur une variété algébrique singulière, initiée par John Nash. Puis nous expliquerons des progrès récents, obtenus en collaboration avec Kevin Langlois et Hussein Mourtada, dans le cas où la variété est équipée d'une action de tore dont les orbites génériques sont de codimension 1.
Dans cet exposé j'introduirai les surfaces K3 et leurs groupes d'automorphismes, en particulier je montrerai comme la théorie des réseaux joue un rôle clé dans cette étude. Je montrerai des progrès récents sur les automorphismes qui agissent non-symplectiquement et qui sont d'ordre un multiple de sept. Il s'agit ici d'un des cas qui est encore ouvert en vue d'une classification complète des groupes d'automorphismes finis qui agissent sur les surfaces K3. Si le temps le permet je donnerai des exemples qui utilisent les fibrations elliptiques. Ces résultats sont obtenus en collaboration avec R. Bell, P. Comparin, J. Li, A. Rinc'on-Hidalgo, A. Zanardini.
Dans cet exposé j'introduirai les surfaces K3 et leurs groupes d'automorphismes, en particulier je montrerai comme la théorie des réseaux joue un rôle clé dans cette étude. Je montrerai des progrès récents sur les automorphismes qui agissent non-symplectiquement et qui sont d'ordre un multiple de sept. Il s'agit ici d'un des cas qui est encore ouvert en vue d'une classification complète des groupes d'automorphismes finis qui agissent sur les surfaces K3. Si le temps le permet je donnerai des exemples qui utilisent les fibrations elliptiques. Ces résultats sont obtenus en collaboration avec R. Bell, P. Comparin, J. Li, A. Rinc'on-Hidalgo, A. Zanardini.
Je présenterai des travaux récents qui mettent en scène des hypersurfaces cubiques projectives complexes de dimension trois et les revêtements cycliques ramifiés au-dessus, pour étudier la riche et belle géométrie de la variété de Fano des droites qu'ils contiennent et le comportement de l'automorphisme du revêtement lors de la dégénérescence vers une cubique à singularités isolées.
Je présenterai des travaux récents qui mettent en scène des hypersurfaces cubiques projectives complexes de dimension trois et les revêtements cycliques ramifiés au-dessus, pour étudier la riche et belle géométrie de la variété de Fano des droites qu'ils contiennent et le comportement de l'automorphisme du revêtement lors de la dégénérescence vers une cubique à singularités isolées.