In this talk, I will first recall a few standard results on predator-prey systems with or without Allee effect on the prey. Then I will present a brake-driven gene drive reversal model (spatialized population genetics) and show the link with the first part. Thanks to this link, a co-extinction result will be rigorously established and a co-invasion result will be partially proved, partially illustrated numerically. This is an interdisciplinary joint work with Vincent Calvez and Florence Débarre.
The theory of fewnomials seeks quantitative bounds on polynomial systems in terms of the number of nonzero monomials occurring in the system. These bounds can be of different nature. The first focus of the fewnomial theory was to find bounds for the number of real solutions of multivariate sparse systems. Nevertheless, one can also ask for bounds on the maximal multiplicity of a complex solution to a sparse polynomial system. In this work, we study bivariate systems defined by two curves. We consider a mixed model in which one curve has a bounded number of monomials, while the other has a bounded degree. We show that the intersection multiplicity of any isolated solution of such system is polynomially bounded by these two parameters, provided that the solution has nonzero coordinates. This is similar to the real case, since an analogous bound is known for the number of real solutions of these types of systems. We also discuss the connections between sparse polynomials and algebraic complexity theory. This is joint work with Pascal Koiran.
L'exposé se fera en deux temps. Dans la première partie (accessible à tous les membres de l'équipe), je présenterai le lambda-mu-calcul (pure et typé) de Parigot ainsi que ses propriétés et ses défauts. J'introduirai ensuite le lambda-mu-mu'-calcul (version De Groote) et je vous présenterai ses multiples propriétés de normalisation (sans rentrer dans les détails techniques). Dans la deuxième partie, je reprendrai quelques résultats techniques pour présenter les méthodes que nous avons utilisées pour les démontrer.
On introduit de nouveaux groupes de Kähler, compactifiant les groupes modulaires et sur lesquels les systèmes locaux de TQFT se prolongent. Ceci permet notamment de montrer que les surfaces algébriques introduites il y a 20 ans par Bogomolov-Katzarkov pour fournir des contre-exemples à la conjecture de Shafarevich de convexité holomorphe vérifient cet énoncé sauf dans des cas résiduels. Travail en cours avec Louis Funar
En 2005-2007 Burdzy, Caffarelli et Lin, Van den Berg ont conjecturé, dans des contextes différents, que la somme (ou le maximum) des valeurs propres fondamentales du Laplacien-Dirichlet associées à des cellules disjointes d'un domaine planaire est asymptotiquement minimale pour une structure en nid d'abeilles, quand le nombre de cellules devient très grand. Je vais discuter l'histoire de cette conjecture en détaillant les arguments de Fejes Toth et Hales sur le problème du nid d'abeilles classique, et je vais démontrer la conjecture (du maximum) pour les valeurs propres du Laplacien-Robin. Les résultats présentés ont été obtenus avec I. Fragala, B. Velichkov et G. Verzini.
La géométrie Lipschitz est une branche de la théorie des singularités qui étudie les données métriques d'un germe d'espace analytique complexe et l'invariance de celles-ci à homéomorphisme bi-Lipschitz près. Après en avoir introduit les bases, je vais parler d'une nouvelle approche de l'étude de ces invariants, et en particulier des taux de croissance Lipschitz internes, basée sur la combinatoire d'un espace de valuations (l'entrelacs non archimédien - à la Berkovich - de la singularité). Je vais décrire précisément la structure métrique interne d'un germe de surface singulière complexe en montrant que ses taux de croissance déterminent et sont déterminés par des données géométriques globales : la topologie du germe, ses sections hyperplanes et ses courbes polaires génériques. Ceci est un travail en commun avec André Belotto et Anne Pichon.
TBA
Travail en commun avec J.P. Monnier et R. Quarez. La normalisation faible d'une variété algébrique complexe est une variété intermédiaire entre la variété et sa normalisation, qui est en bijection avec la variété de départ. On développe une notion analogue pour les variétés algébriques réelles en s'appuyant sur l'anneau des fonctions rationnelles continues.
L’objectif de ce travail est l’étude algébrique, arithmétique et combinatoire des paires de conjugués des séries à coefficients dans un corps fini, qui sont situés en dehors du cercle unité dont tous les autres conjugués sont á l’intérieur. On s’intéresse principalement à décrire le lien entre les paires des séries de Pisot et leurs constructions. Nous avons montré que les polynômes P(Y) =Yd+Ad−1Yd−1+. . .+A0 ∈ Fq[X][Y] tel que deg(Ad−2)>deg(Ai) pour tout i différent de d−2 et deg(Ad−2)<2 deg(Ad−1) où q différent 2r (r≥1) admet une paire des séries de Laurent. En effet, on étudie la relation entre les polynômes irréductibles, on va prendre à titre d’exemple, le cas des paires des séries des Pisot (ou bien les séries 2-Pisot) tout en déterminant le cardinal de l’ensemble de ces éléments en fonction du degré et de la hauteur logarithmique. Par conséquent, on donne une minoration du nombre des polynômes irréductibles à deux variables sur un corps fini Fq.
à venir
We consider a particle constrained in a graph structure and excited by an external controlling field. Its dynamics is modeled by the bilinear Schrödinger equation i∂t ψ = −∆ψ + u(t)Bψ in the Hilbert space L2(G , C) where G is the graph. The Laplacian −∆ is equipped with self-adjoint boundary conditions. The action of the field is represented by the bounded symmetric operator B and by the control function u ∈ L2((0,T),R) with T > 0, which accounts its intensity. The exact controllability of the bilinear Schrödinger equation on bounded intervals was widely studied in literature. Nevertheless, the bilinear Schrödinger equation on graphs is in general a more delicate matter and it was only studied on compact networks. Up to our knowledge, the controllability on infinite graphs is still an open problem. The main reason can be found on the dispersive phenomena characterizing the equation (not considering the difficulties already appearing on compact graphs). A peculiarity of the Schrödinger equation is the loss of localization of the wave packets during the evolution, the dispersion. This effect can be measured by L ∞ -time decay. In this talk, we present the bilinear Schrödinger equation on infinite graphs. In par- ticular, we show the existence of suitable subspaces of L 2 (G , C) where the equation is well-posed. In such spaces, we define assumptions on the structure of the graph and on the control field such that the global exact controllability is guaranteed. The result leads to the so-called “energetic controllability”.
This talk will explain the each word in the title separately, and then how they can be combined together. Our problem is how to make coinductive equivalence proofs easier, and in particular how to prove sound enhancements of the bisimulation proof technique (also called up-to techniques). The lingua franca of this talk will be the lambda-calculus.
Les types dépendants permettent de rajouter des preuves d'invariants dans les structures de données et ainsi de faire des programmes corrects par construction. L'envers de la médaille est une multiplication des structures subtilement différentes pour lesquelles il faut prouver des lemmes similaires de manière répétée. L'ornementation est un outil méta-théorique introduit par Conor McBride qui permet de décrire ces relations et apporte avec lui une boite à outils de méta-programmation. J'ai étendu cette notion aux types inductifs-récursifs, des définitions simultanées d'une structure et d'un éliminateur. Ceux-ci sont nécessaires pour définir certains gros univers mais apparaissent également ``dans la vie courante''. Je m'attarderai surtout sur des exemples et leur axiomatisation méta- théorique qui a récemment progressée.
Le problème d'apprentissage par renforcement (deep learning) des réseaux de neurones artificiels multicouches a suscité beaucoup d'intérêt ces derniers temps d'un point de vue mathématique et expérimental. La méthode de rétropropagation du gradient (backpropagation), peut être interprétée ici comme la solution numérique d'un système différentiel défini par le champs de gradient d'une fonction analytique réelle. Nous discutons des avantages et inconvénients de cette approche. Ensuite, grâce à l'extension de l'espace des configurations, nous serons amener à étudier un système différentiel nouveau, admettant des intégrales premières simples et une déformation dissipative qui possède un attracteur global. La discrétisation de ce nouveau système sur des exemples, montrent que nous parvenons à une méthode plus efficace pour l'apprentissage de certain types de réseaux, par rapport à la méthode de rétropropagation conventionnelle. A. Tsygvintsev, ``On the overfly algorithm in deep learning of neural networks'', Applied Mathematics and Computation 349 (2019) 348–358
La logique de séparation concurrente est un formalisme qui permet de raisonner sur des programmes impératifs (manipulant des pointeurs) et concurrents. Dans cet exposé, je vous donnerai un aperçu des principes généraux sur lesquels est basé le système Iris, développé par Derek Dreyer et ses collaborateurs.
This talk will survey some of the interesting inequalities that arise from the interplay between geometry, analysis, and mathematical physics. Discussions of the classical isoperimetric inequality (given a length of string, how do you arrange it to enclose the most area?) and the eigenvalue problem for a symmetric matrix will set the stage. The main focus of the talk will be on the eigenvalues of various differential operators, especially the Laplacian including its one-dimensional specialization, -d^2/dx^2. In physical terms, the eigenvalues of these differential operators give the natural frequencies of vibrating strings and drums. The analog of the classical isoperimetric inequality for the Laplacian is called the Faber-Krahn inequality, which states that among all drums of a given area the one producing the lowest bass note is the circular one (all other physical parameters held fixed). By analogy, we call such an analytic inequality an {it isoperimetric inequality}. Such results, when the optimizing case is a disk or ball, are usually proved via symmetrization (rearrangement) techniques, which we will sketch. Beyond that there are many interesting general inequalities for eigenvalues, several of which can be proved by elementary means. We look at a few of these inequalities, such as inequalities relating the Dirichlet and Neumann eigenvalues of the Laplacian and also the {it universal eigenvalue inequalities} of Payne, P'olya, and Weinberger (PPW) and their successors, which are inequalities between the eigenvalues of the Dirichlet Laplacian and give control over their rate of growth.