Polynômes hyperboliques et théorie des perturbations analytiques à plusieurs paramètres


Krzysztof Kurdyka, LAMA. 3 mai 2010 09:30 labo 2:00:00
Abstract:

Let $P(x,z)= z^d +sum_{i=1}^{d}a_i(x)z^{d-i}$ be a polynomial, where $a_i$ are real analytic functions in an open subset $U$ of $R^n$. If for any $x in U$ the polynomial $zmapsto P(x,z)$ has only real roots, then we can write those roots as locally lipschitz functions of $x$. Moreover, there exists a modification (a locally finite composition of blowing-ups with smooth centers) $sigma : W to U$ such that the roots of the corresponding polynomial $tilde P(w,z) =P(sigma (w),z),,win W $, can be written locally as analytic functions of $w$. Let $A(x), , xin U$ be an analytic family of symmetric matrices, where $U$ is open in $R^n$. Then there exists a modification $sigma : W to U$, such the corresponding family $tilde A(w) =A(sigma(w))$ can be locally diagonalized analytically (i.e. we can choose locally a basis of eigenvectors in an analytic way). This generalizes the Rellich's well known theorem (1937) for one parameter families. Similarly for an analytic family $A(x), , xin U$ of antisymmetric matrices there exits a modification $sigma$ such that we can find locally a basis of proper subspaces in an analytic way.