Qu'est-ce que la géométrie d'un nuage de points ? Aspects théoriques et algorithmiques


Frédéric Chazal, Université de Bourgogne et INRIA. 18 janvier 2007 17:00 labo 2:00:00
Abstract:

L'estimation et l'approximation de grandeurs topologiques ou géométriques associées à des formes dont on ne connait qu'une approximation posent des problèmes pratiques et théoriques délicats en calcul géométrique. Ces problèmes ont été largement étudiés depuis plusieurs années dans le cas de la reconstruction d'hypersurfaces lisses dans R^n : à partir d'un nuage de points mesurés sur une forme lisse, on souhaite 'reconstruire' la surface de cette forme en garantissant que le résultat produit possède la même topologie que celle de la forme échantillonnée. Il existe bon nombre de résultats et d'algorithmes satisfaisant permettant de répondre a ce problème dans le cas particulier des surfaces dans R^3.Cependant, les résultats et les méthodes actuelles possèdent un double inconvénient. Ils ne se généralisent pas à des objets non lisses et conduisent à des algorithmes inefficaces en dimension supérieure à 3. Le développement récents des outils de mesure et de simulation nécessite de mettre au point des techniques mathématiques et algorithmiques permettant d'extraire l'information topologique et géométrique de nuages de points issus d'objets non lisses dans des espaces de toutes dimensions. Dans cet exposé, nous présenterons quelques résultats récents dans cette voie. Nous verrons en particulier, que dans le cas de l'approximation d'objets non lisses, il apparait des ``phenomènes d'échelle'' faisant apparaitre différentes topologies à différentes échelles.