

Algebraic and combinatorial aspects of category theory

Tom Hirschowitz

2025

Part I

Invitation

Outline

- ① Algebraic invitation
- ② Combinatorial invitation

Outline

- ① Algebraic invitation
- ② Combinatorial invitation

Part II

Correspondence between monads and
theories, take 1

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

This lecture

A first, easy example bridge between algebraic and combinatorial category theory.

Equivalence between

- $T\text{-Alg}$ for suitable monads T on sets and
- suitable presheaf categories.

A bit more detail

- **Finitary** monad, intuitively: finitary operations.
- Form a category $\mathbf{Mnd}_f(\mathbf{Set})$.
- **Lawvere theory**: small category with finite products freely generated by an object.
- Form a category \mathbf{Law} .
- Each Lawvere theory $\mathbb{L} \mapsto$ category $\mathbf{Mod}(\mathbb{L})$ of models.
- $\mathbf{Mod}(\mathbb{L}) \hookrightarrow [\mathbb{L}, \mathbf{Set}]$.

Theorem (Linton)

$$\begin{array}{ccc}
 \mathbf{Mnd}_f(\mathbf{Set}) & \xrightarrow{\cong} & \mathbf{Law} \\
 & \searrow (-)\text{-Alg} & \swarrow \mathbf{Mod} \\
 & \mathbf{CAT} &
 \end{array}$$

Reminder on monads

Definition

A **monad** on a category \mathbf{C} is an endofunctor $T: \mathbf{C} \rightarrow \mathbf{C}$, equipped with natural transformations

$$\eta: id_{\mathbf{C}} \rightarrow T \quad \mu: T \circ T \rightarrow T,$$

making the following diagrams commute.

$$\begin{array}{ccc}
 T(X) & \xrightarrow{\eta_{T(X)}} & T(T(X)) & \xleftarrow{T(\eta_X)} & T(X) \\
 & \searrow \mu_X & \swarrow & & \\
 & T(X) & & &
 \end{array}
 \quad
 \begin{array}{ccc}
 T(T(T(X))) & \xrightarrow{T(\mu_X)} & T(T(X)) \\
 \mu_{T(X)} \downarrow & & \downarrow \mu_X \\
 T(T(X)) & \xrightarrow{\mu_X} & T(X)
 \end{array}$$

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Algebraic signatures

Definition (*Algebraic signature*)

Set O with map $a: O \rightarrow \mathbb{N}$.

Example

Let $\Sigma_{0,2}$ have

given by

$$[0, 2] : 2 \rightarrow \mathbb{N}.$$

Terms

Fix an algebraic signature Σ given by $a: O \rightarrow \mathbb{N}$.

Definition (Σ -terms)

- Family $\Sigma^*: \mathbf{Set} \rightarrow \mathbf{Set}$.
- Defined by $\Sigma^*(X) = \{X \vdash_{\Sigma} e\}$, where \vdash_{Σ} defined inductively:

$$\frac{\text{VAR}}{X \vdash_{\Sigma} [x]} \ (x \in X) \qquad \frac{\text{OP} \quad \begin{matrix} X \vdash_{\Sigma} e_1 & \dots & X \vdash_{\Sigma} e_p \end{matrix}}{X \vdash_{\Sigma} o(e_1, \dots, e_p)} \ (a(o) = p)$$

Syntactic categories

Definition (*Syntactic category \mathbb{L}_Σ*)

- Morphism $m \rightarrow n$:
 - n -tuple $\langle M_1, \dots, M_n \rangle$,
 - where each $M_i \in \Sigma^*(m)$: term with scope x_1, \dots, x_m (names irrelevant).
- View each $M: m \rightarrow n$ as an *assignment*
 $[y_1 \mapsto M_1, \dots, y_n \mapsto M_n]$.
- Composition $m \xrightarrow{M} n \xrightarrow{N} p$ by substitution
 $\langle N_1[M], \dots, N_p[M] \rangle$.
- Identity $n \rightarrow n$: $\langle x_1, \dots, x_n \rangle$.

Syntactic categories

Exercise

Check the category axioms.

Syntactic categories

- Associativity of composition

$$m \xrightarrow{M} n \xrightarrow{N} p \xrightarrow{P} q$$

given by

$$P_l[N][M] = P_l[N[M]],$$

for all $l \in q$, where $N[M]_k = N_k[M]$ for all $k \in p$.

- Left unitality $id_n \circ M = M$:

$$(id_n \circ M)_j = y_j[M] = M_j \quad (j \in n).$$

- Right unitality $M \circ id_m = M$:

$$(M \circ id_m)_j = M_j[\langle x_1, \dots, x_m \rangle] = M_j \quad (j \in n).$$

Syntactic categories

Exercise

Check the existence of

- binary products and
- terminal object

in \mathbb{L}_Σ .

Syntactic categories

Candidates:

- Product $m \times n$: sum $m + n$?
- Terminal object: initial object 0 ?

Syntactic categories

Proof.

- Morphisms $m \rightarrow 0$: 0-tuples of terms... i.e., $\langle \rangle$.
- Morphisms $m \rightarrow n + p$: $(n + p)$ -tuples of terms with scope n .
 \cong pairs of an n -tuple and a p -tuple.

$$\underbrace{\langle M_1, \dots, M_n \rangle}_{n\text{-tuple}}, \underbrace{\langle M_{n+1}, \dots, M_{n+p} \rangle}_{p\text{-tuple}}$$

- Projections $n \xleftarrow{\langle x_1, \dots, x_n \rangle} n + p \xrightarrow{\langle x_{n+1}, \dots, x_{n+p} \rangle} p$.

$$\langle x_1, \dots, x_n \rangle[M] = \langle M_1, \dots, M_n \rangle$$

$$\langle x_{n+1}, \dots, x_{n+p} \rangle[M] = \langle M_{n+1}, \dots, M_{n+p} \rangle.$$

□

Syntactic categories

Trivial observation:

Proposition

Every object in \mathbb{L}_Σ is a *finite power*^a of 1.

^aSelf, multiple product.

Proof.

Indeed, $n = 1 + \dots + 1$, brilliant, I know.

Particular case: $0 = 1^0$. □

Towards Lawvere theories

Let us now abstract over the properties of syntactic categories.
~ Lawvere theories.

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- **Lawvere theories and their models**
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Finite products

Recall the definition of binary products?

Definition (*Product* of a family $(A_i)_{i \in I}$ of objects in category C)

- Object $\prod_i A_i$ and projections $\pi_j: \prod_i A_i \rightarrow A_j$.
- Such that for all cones $\lambda_j: C \rightarrow A_j$,
- $\exists!$ cone morphism

$$\begin{array}{ccc} C & \dashrightarrow & \prod_i A_i \\ & \searrow \lambda_j & \swarrow \pi_j \\ & A_j. & \end{array}$$

A category has *finite products* if each $\prod_i A_i$ exists for finite I .

Finite products

Exercise

Show that \mathbf{C} has finite products iff it has binary products and a terminal object.

Powers

Definition (I -th power A^I of $A \in \mathbf{C}$)

$$\prod_{i \in I} A.$$

Remark

Subtlety: power \approx heterogeneous function object.

Indeed, I is a set!

Universal property:

$$\mathbf{C}(X, A^I) \cong \mathbf{Set}(I, \mathbf{C}(X, A)).$$

Skeletal categories

Definition (*Skeletal* category)

All isomorphic objects are equal.

Example

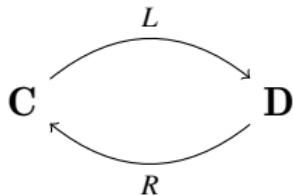
- Counterexample: \mathbf{Set}_f , the category of finite sets.
Not small!
- Example: \mathbb{F} , finite cardinals $(0, 1, \dots)$.

This is your first equivalence of categories!

Equivalence

Definition

An *equivalence of categories* is a pair

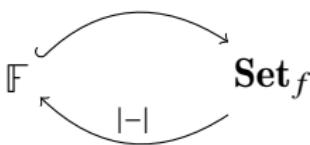


of functors, together with natural isomorphisms

$$\eta: id_C \rightarrow RL \quad \text{and} \quad \varepsilon: LR \rightarrow id_D.$$

Equivalence

Example



- Choose bijection $\varepsilon: |X| \rightarrow X$ for any $X \in \mathbf{Set}_f$, identity on any $X \in \mathbb{F} \subseteq \mathbf{Set}_f$.
- $|-|$ on morphisms: $|f| := \varepsilon_Y^{-1} \circ f \circ \varepsilon_X$, so that we have:

$$\begin{array}{ccc}
 |X| & \xrightarrow{\varepsilon_X} & X \\
 |f| \downarrow & & \downarrow f \\
 |Y| & \xrightarrow{\varepsilon_Y} & Y
 \end{array}$$

- $\eta: n \rightarrow |n|$ is an equality (hence natural).

Interlude: full, faithful, embedding

For a functor $F: \mathbf{C} \rightarrow \mathbf{D}$, we have seen:

- **full**: $F_{A,B}: \mathbf{C}(A, B) \rightarrow \mathbf{D}(FA, FB)$ surjective $\forall A, B$;
- **faithful**: $F_{A,B}: \mathbf{C}(A, B) \rightarrow \mathbf{D}(FA, FB)$ injective $\forall A, B$.

Definition

Embedding: injective on objects + faithful.

\approx subcategory.

Remark

Intuition for full embedding $E: \mathbf{C} \hookrightarrow \mathbf{D}$: $\mathbf{C} \cong \text{image of } E$.

Characterisation of equivalences

Definition ($F: \mathbf{C} \rightarrow \mathbf{D}$ essentially surjective on objects)

Any $D \in \mathbf{D}$ is isomorphic to some $F(C)$.

Proposition

Any functor that is

- fully faithful and
- essentially surjective on objects

is an equivalence.

Exercise

- Prove this (requires the axiom of choice).
- Observe that the previous proof is an instance.

Lawvere theories

Definition (*Lawvere theory*)

- A small, skeletal category with finite products, whose objects all are finite powers of a single “generating” object.
- Morphism: functor preserving
 - finite products and
 - generating object.
- Form a category **Law**.

Example

- Any \mathbb{L}_Σ .
- Particular case: empty Σ , say Σ_0 .

Exercise: compute \mathbb{L}_{Σ_0} .

Solution

- Objects: finite cardinals, by definition.
- Morphisms $m \rightarrow n$: n -tuples of terms $m \vdash_{\Sigma} e \dots$
but no operations \rightsquigarrow terms = variables.
- Thus, TFAE:
 - morphisms $m \rightarrow n$,
 - n -tuples of variables in $[i_1], \dots, [i_n]$,
 - **maps** $n \rightarrow m$.
(notational abuse: $m = \{1, \dots, m\}$.)

We have shown:

Proposition

$\mathbb{L}_{\Sigma_0} \cong \mathbb{F}^{op}$, where $\mathbb{F} \hookrightarrow \mathbf{Set}$ denote the **full** subcategory on finite cardinals.

Pondering

Consequence

\mathbb{F}^{op} is a Lawvere theory.

Get used to it:

A (small, skeletal) category with finite products whose objects all are finite powers of a single “generating” object.

- Disjoint sums yield finite coproducts in \mathbb{F} .
- All objects n are copowers $\coprod_{i \in n} 1$ of 1.
- Conclude by duality.

A syntactic viewpoint on \mathbb{F}^{op}

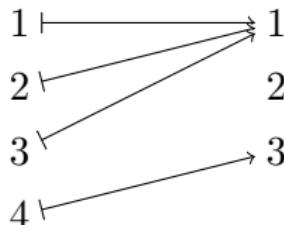
Think of morphisms $m \rightarrow n$ as renamings.

Observation

$$f: n \rightarrow m \text{ in } \mathbb{F} \quad \text{vs} \quad \langle \pi_{f(1)}, \dots, \pi_{f(n)} \rangle: m \rightarrow n.$$

(Each term is a variable, i.e., a projection from the scope.)

Example



$$\frac{4 \rightarrow 3}{\begin{matrix} 1, \dots, 3 \mapsto 1 \\ 4 \mapsto 3 \end{matrix}}$$

$$\langle [1], [1], [1], [3] \rangle$$

A syntactic viewpoint on \mathbb{F}^{op}

Proposition

\mathbb{F}^{op} is initial in **Law**.

Proof.

For any \mathbb{L} , any $\mathbb{F}^{op} \rightarrow \mathbb{L}$ needs to map

- 1 to generating object, say x ,
- any $\langle \pi_{f(1)}, \dots, \pi_{f(n)} \rangle: m \rightarrow n$ to

$$\langle \pi_{f(1)}, \dots, \pi_{f(n)} \rangle: x^m \rightarrow x^n.$$

□

Remark: $\mathbb{F}^{op} \rightarrow \mathbb{L}$ is bijective on objects.

Models of a Lawvere theory

Definition

Model of \mathbb{L} : finite product-preserving functor $\mathbb{L} \rightarrow \mathbf{Set}$.

Full subcategory $[\mathbb{L}, \mathbf{Set}]_{\text{fp}} \hookrightarrow [\mathbb{L}, \mathbf{Set}]$.

Remark

For model $M: \mathbb{L} \rightarrow \mathbf{Set}$,

$$M(n) = M(1^n) \cong M(1)^n.$$

Call $M(1)$ the carrier.

Forgetful functor $\mathbf{U}^{\mathbb{L}}: \mathbf{Mod}(\mathbb{L}) \rightarrow \mathbf{Set}$.

Moral

- For algebraic signature Σ , e.g., with $o: 2 \rightarrow 1$.
- \mathbb{L}_Σ is the free category with finite products on Σ .
- So models $\mathbb{L}_\Sigma \rightarrow \mathbf{Set}$ correspond bijectively to choices of
 - a set X ,
 - maps $X^n \rightarrow X$ for all operations of arity n .

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- **Interlude I: adjunctions**
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Interlude I: adjunctions

- Fix monad $T: \mathbf{C} \rightarrow \mathbf{C}$.
- We have seen $\mathbf{U}^T: T\text{-Alg} \rightarrow \mathbf{C}$.
- Intuition for $T(C)$: “free algebra”.
- Let us substantiate and abstract.

Universal property of free algebra

Recall T -algebra structure $\mu_C^T: T(TC) \rightarrow TC$.

Proposition

For any T -algebra $a: TA \rightarrow A$, the map

$$T\text{-Alg}(TC, A) \xrightarrow{U_{TC,A}^T} \mathbf{C}(TC, A) \xrightarrow{C(\eta_C^T, A)} \mathbf{C}(C, A)$$

is bijective.

$$\begin{array}{ccc} C & \xrightarrow{\eta_C^T} & TC \\ & \searrow f & \downarrow \tilde{f} \\ & & A \end{array}$$

Universal property of free algebra

$$\begin{array}{ccc} C & \xrightarrow{\eta_C^T} & TC \\ & \searrow f & \downarrow \tilde{f} \\ & & A \end{array}$$

Exercise

Prove this.

Candidate \tilde{f}

$$\begin{array}{ccc} C & \xrightarrow{\eta_C^T} & TC \\ & \searrow f & \downarrow Tf \\ & & TA \\ & & \downarrow a \\ & & A \end{array}$$

Need to check:

- commutation of triangle,
- algebra morphism,
- uniqueness.

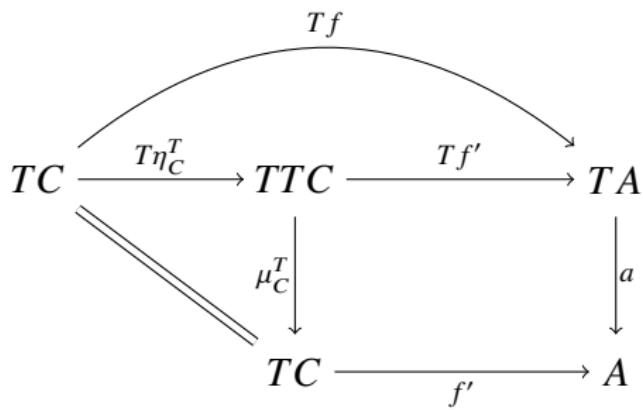
Commutation of triangle

$$\begin{array}{ccc} C & \xrightarrow{\eta_C^T} & TC \\ f \searrow & & \downarrow Tf \\ A & \xrightarrow{\eta_A^T} & TA \\ & \searrow & \downarrow a \\ & & A \end{array}$$

Algebra morphism

$$\begin{array}{ccccc} TTC & \xrightarrow{TTf} & TTA & \xrightarrow{Ta} & TA \\ \mu_C^T \downarrow & & \downarrow \mu_A^T & & \downarrow a \\ TC & \xrightarrow{Tf} & TA & \xrightarrow{a} & A \end{array}$$

Uniqueness



Universal property of free algebra

We have proved:

Proposition

For any T -algebra $a: TA \rightarrow A$, the map

$$T\text{-Alg}(TC, A) \xrightarrow{U_{TC,A}^T} \mathbf{C}(TC, A) \xrightarrow{C(\eta_{C,A}^T)} \mathbf{C}(C, A)$$

is bijective.

$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C^T} & TC \\
 & \searrow f & \downarrow \tilde{f} \\
 & & A
 \end{array}$$

Generalisation: adjunctions

Replace

$$\mathbf{U}^T : T\text{-Alg} \rightarrow \mathbf{C}$$

with arbitrary

$$U : \mathbf{A} \rightarrow \mathbf{C}.$$

Generalisation: adjunctions

Definition (Adjunction)

Functor $U: \mathbf{A} \rightarrow \mathbf{C}$ equipped with

- $F_0(C)$ for all C and
- $\eta_C: C \rightarrow UF_0C$

such that for all $A \in \mathbf{A}$ and f as in

$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C} & UF_0C \\
 & \searrow f & \downarrow U\tilde{f} \\
 & & UA
 \end{array}$$

there exists a unique $\tilde{f}: F_0C \rightarrow A$ making the triangle commute.

Algebras \rightsquigarrow adjunction

- $F_0(C)$ is (TC, μ_C^T) ,
- $\eta_C: C \rightarrow UF_0C$ is $\eta_C^T: C \rightarrow TC$.

Symmetrisation

Proposition

For any adjunction $U: \mathbf{A} \rightarrow \mathbf{C}$,

- F_0 extends to a unique functor $F: \mathbf{C} \rightarrow \mathbf{A}$
- making $\eta: id \rightarrow UF$ natural.

Proof.

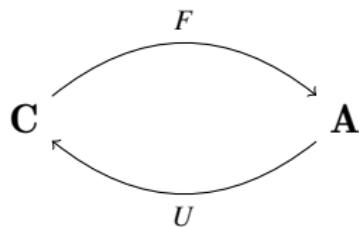
$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C} & UF_0C \\
 f \downarrow & & \downarrow \widetilde{U\eta_D \circ f} \\
 D & \xrightarrow{\eta_D} & UF_0D
 \end{array}
 \qquad
 \begin{array}{ccc}
 F_0C & & \\
 \downarrow F(f) := \widetilde{\eta_D \circ f} & & \\
 F_0D & &
 \end{array}$$

□

Symmetrisation

Corollary

Adjunctions (U, F_0, η) are in 1-1 correspondence with pairs



equipped with natural $\eta: id_C \rightarrow UF$, such that

$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C} & UFC \\
 & \searrow f & \downarrow U\tilde{f} \\
 & & UA
 \end{array}$$

as before.

Symmetrisation

Definition

We call triples (U, F, η) *functorial adjunctions*.

Symmetrisation continued

Proposition

Any adjunction (U, F_0, η) gives rise to a unique $\varepsilon: FU \rightarrow id_A$ such that

$$UA \xrightarrow{\eta_{UA}} UFUA \quad \text{and} \quad \begin{array}{ccc} FC & \xrightarrow{F\eta_C} & FUFC \\ \searrow & & \downarrow \varepsilon_{FC} \\ UA & & FC \end{array}$$

and

$$FC \xrightarrow{F\eta_C} FUFC \quad \begin{array}{ccc} FC & \xrightarrow{F\eta_C} & FUFC \\ \searrow & & \downarrow \varepsilon_{FC} \\ UA & & FC \end{array}$$

Symmetrisation continued

$$\begin{array}{ccc}
 UA & \xrightarrow{\eta_{UA}} & UFUA \\
 & \searrow & \downarrow \varepsilon_A \\
 & & UA
 \end{array}
 \quad \text{and} \quad
 \begin{array}{ccc}
 FC & \xrightarrow{F\eta_C} & FUFC \\
 & \searrow & \downarrow \varepsilon_{FC} \\
 & & FC
 \end{array}$$

Proof.

Define it as below right.

$$\begin{array}{ccc}
 UA & \xrightarrow{\eta_{UA}} & UFUA \\
 & \searrow & \downarrow \widetilde{U id_{UA}} \\
 & & UA
 \end{array}
 \quad
 \begin{array}{ccc}
 & & FUUA \\
 & & \downarrow \varepsilon_A := \widetilde{id_{UA}} \\
 & & A
 \end{array}$$

Entails left-hand triangle commutes.

□

Symmetrisation continued

$$\begin{array}{ccc}
 UA & \xrightarrow{\eta_{UA}} & UFUA \\
 & \searrow & \downarrow \varepsilon_A \\
 & & UA
 \end{array}
 \quad \text{and} \quad
 \begin{array}{ccc}
 FC & \xrightarrow{F\eta_C} & FUFC \\
 & \searrow & \downarrow \varepsilon_{FC} \\
 & & FC
 \end{array}$$

Proof.

Uniqueness at $A := FC$ gives right-hand triangle.

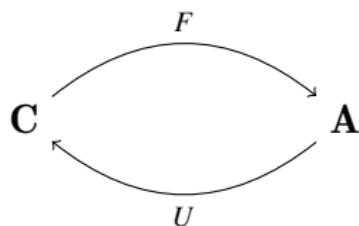
$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C} & UFC \\
 \downarrow \eta_C & & \downarrow UF\eta_C \\
 UFC & \xrightarrow{\eta_{UFC}} & UFUFC \\
 & \searrow \widetilde{id_{UFC}} & \swarrow \text{green curved arrow} \\
 & & UFC
 \end{array}
 \quad
 \begin{array}{c}
 FC \\
 \downarrow F\eta_C \\
 FUFC \\
 \downarrow \varepsilon_{FC} := \widetilde{id_{UFC}} \\
 FC
 \end{array}$$

□

Symmetrisation continued

Corollary

Adjunctions (U, F_0, η) are in 1-1 correspondence with pairs



equipped with natural η and ε , such that

$$\begin{array}{ccc}
 UA & \xrightarrow{\eta_{UA}} & UFUA \\
 & \searrow & \downarrow U\varepsilon_A \\
 & UA &
 \end{array}
 \quad \text{and} \quad
 \begin{array}{ccc}
 FC & \xrightarrow{F\eta_C} & FUFC \\
 & \searrow & \downarrow \varepsilon_{FC} \\
 & FC &
 \end{array}$$

Symmetrisation continued

Proof.

Remains to prove that any such $(U, F, \eta, \varepsilon)$ yields an adjunction.

Existence of \tilde{f} :

$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C} & UFC \\
 \downarrow f & & \downarrow UFf \\
 & \eta_{UA} \nearrow & UFUA \\
 UA & \xrightarrow{\quad} & UA \\
 & & \downarrow U\varepsilon_A \\
 & & A
 \end{array}
 \quad
 \begin{array}{c}
 FC \\
 \downarrow \tilde{f} := \varepsilon_A \circ Ff \\
 A
 \end{array}$$

□

Symmetrisation continued

Proof.

Uniqueness of \tilde{f} :

$$\begin{array}{ccccc} FC & \xrightarrow{F\eta_C} & FUFC & \xrightarrow{\varepsilon_{FC}} & FC \\ & \searrow Ff & \downarrow FUf' & & \downarrow f' \\ & & FU A & \xrightarrow{\varepsilon_A} & A \end{array}$$

□

Symmetrisation continued

Definition

We call such 4-tuples $(U, F, \eta, \varepsilon)$ *balanced adjunctions*.

Symmetrisation III

Adjunctions (U, F_0, η) are “rightist”: they emphasise U , which is called the *right adjoint*.

Definition (*leftist adjunction*)

Functor $F: \mathbf{C} \rightarrow \mathbf{A}$ equipped with

- $U_0(A)$ for each A and
- $\varepsilon_A: FU_0A \rightarrow A$

such that for all C and f as in

$$\begin{array}{ccc}
 U_0A & & FU_0A \xrightarrow{\varepsilon_A} A \\
 \uparrow \tilde{f} & & \uparrow F\tilde{f} \\
 C & & FC
 \end{array}$$

there exists a unique $\tilde{f}: C \rightarrow U_0A$ making the triangle commute.

Symmetrisation III

Proposition

For any leftist adjunction (F, U_0, ε) , U extends to a unique functor making ε natural.

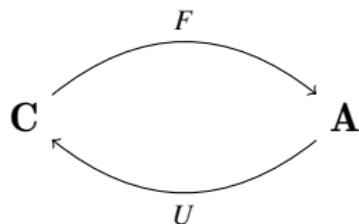
Proof.

Similar to the rightist case. □

Symmetrisation III

Corollary

Leftist adjunctions are in 1-1 correspondence with pairs



equipped with natural $\varepsilon: FU \rightarrow id_A$, such that

$$\begin{array}{ccc}
 U_0 A & & FU_0 A \xrightarrow{\varepsilon_A} A \\
 \exists ! \hat{f} \uparrow & & Ff \uparrow \quad f \\
 C & & FC
 \end{array}$$

as before.

Symmetrisation III

Definition

We call triples (U, F, ε) *functorial leftist adjunctions*.

Symmetrisation IV

Corollary

Functorial leftist adjunctions (U, F, ε) are in 1-1 correspondence with balanced adjunctions.

Proof.

Similar to rightist case. □

Symmetrisation V

Proposition

Given any adjunction the properties

$$\begin{array}{ccc}
 C & \xrightarrow{\eta_C} & UFC \\
 & \searrow f & \downarrow U\tilde{f} \\
 & UA & A
 \end{array}
 \quad
 \begin{array}{ccc}
 FC & & \\
 \downarrow \tilde{f} & & \\
 A & &
 \end{array}
 \quad \text{and} \quad
 \begin{array}{ccc}
 UA & & A \\
 \uparrow \tilde{f} & & \xrightarrow{\varepsilon_A} \\
 C & & \\
 \uparrow F\tilde{f} & & \\
 FC & & f
 \end{array}$$

induce a bijection

$$\mathbf{C}(C, UA) \cong \mathbf{A}(FC, A)$$

which is a natural isomorphism

$$\begin{array}{ccccc}
 \mathbf{C}^{op} \times U & \xrightarrow{\quad} & \mathbf{C}^{op} \times \mathbf{C} & \xrightarrow{\quad C(-1, -2) \quad} & \mathbf{Set.} \\
 \searrow & & \cong & & \\
 \mathbf{C}^{op} \times \mathbf{A} & & & & \\
 & & & & \\
 \uparrow & & & & \\
 F^{op} \times \mathbf{A} & \xrightarrow{\quad} & \mathbf{A}^{op} \times \mathbf{A} & \xrightarrow{\quad A(-1, -2) \quad} &
 \end{array}$$

Preparatory exercises

1. Equip the product graph $\mathbf{C} \times \mathbf{D}$ with category structure, making it a product in \mathbf{Cat} .
2. A transformation α between functors $F, G: \mathbf{C} \times \mathbf{D} \rightarrow \mathbf{E}$ is natural iff it is natural in each component, i.e.,
$$\alpha_{-,D}: F(-, D) \rightarrow G(-, D) \quad \text{and} \quad \alpha_{C,-}: F(C, -) \rightarrow G(C, -)$$
are both natural.
3. A natural transformation $\alpha: F \rightarrow G: \mathbf{C} \rightarrow \mathbf{D}$ whose components $\alpha_C: FC \rightarrow GC$ are isomorphisms, is a natural isomorphism.

Naturality proof

$$\begin{array}{ccc}
 C \xrightarrow{f} UA & \vdash & FC \xrightarrow{\tilde{f}} A \\
 \begin{array}{ccc}
 C & A & \downarrow \\
 \uparrow u & \downarrow v & \downarrow \\
 C' & A' &
 \end{array} & \begin{array}{ccc}
 \mathbf{C}(C, UA) \xrightarrow{\cong} \mathbf{A}(FC, A) & & \downarrow \\
 \mathbf{C}(u, Uv) \downarrow & & \downarrow \mathbf{A}(Fu, v) \\
 \mathbf{C}(C', UA') \xrightarrow{\cong} \mathbf{A}(FC', A') & & \downarrow \\
 \begin{array}{ccc}
 FC' \xrightarrow{Fu} FC \xrightarrow{\tilde{f}} A \xrightarrow{v} A' \\
 \parallel ? \\
 C' \xrightarrow{u} C \xrightarrow{f} UA \xrightarrow{Uv} UA' \vdash \widetilde{U(v) \circ f} \circ u
 \end{array}
 \end{array}
 \end{array}$$

It suffices to check that the candidate $v \circ \tilde{f} \circ Fu$ satisfies the universal property of $\widetilde{U(v) \circ f} \circ u$.

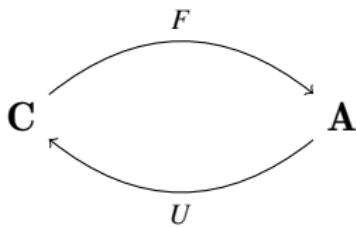
Naturality proof

$$\begin{array}{ccc}
 C' & \xrightarrow{\eta_{C'}} & UFC' \\
 \searrow u & & \downarrow UFu \\
 C & \xrightarrow{\eta_C} & UFC \\
 \searrow f & & \downarrow U\tilde{f} \\
 UA = UA & & A \\
 \searrow Uv & & \downarrow v \\
 UA' & & A'
 \end{array}
 \qquad
 \begin{array}{ccc}
 FC' & & \\
 \downarrow Fu & & \\
 FC & & \\
 \downarrow \tilde{f} & & \\
 A & & \\
 \downarrow v & & \\
 A'
 \end{array}$$

Symmetrisation V

Corollary

(Rightist functorial) adjunctions are in 1-1 correspondence with pairs



equipped with a natural isomorphism

$$\mathbf{C}(C, UA) \cong \mathbf{A}(FC, A).$$

Symmetrisation V: proof

$$\mathbf{C}(C, UA) \cong \mathbf{A}(FC, A)$$

define: $\eta_C \leftarrow id_{FC} (A = FC)$

$$(C = UA) id_{UA} \mapsto \varepsilon_A$$

then have:

$$\begin{array}{ccc} C & \xrightarrow{\eta_C} & UFC \\ \searrow \tilde{f}' & \downarrow Uf' & \leftarrow \\ UA & & A \\ & & \downarrow f' \\ & & FC \end{array}$$

$$\begin{array}{ccc} C & & FC \\ f \downarrow & \mapsto & Ff \downarrow \searrow \tilde{f} \\ UA & & FUA \xrightarrow{\varepsilon_A} A \end{array}$$

Symmetrisation V: proof

Indeed:

$$\begin{array}{ccc}
 UA = UA & \xrightarrow{\quad} & FUA \xrightarrow{\varepsilon_A} A \\
 & & \\
 \downarrow & \mathbf{C}(UA, UA) \xrightarrow{\cong} \mathbf{A}(FUA, A) & \downarrow \\
 & \mathbf{C}(f, UA) \downarrow & \downarrow \mathbf{A}(Ff, A) \\
 & \mathbf{C}(C, UA) \xrightarrow{\cong} \mathbf{A}(Ff, A) & \\
 & & \\
 C \xrightarrow{f} UA & \xrightarrow{\quad} & FUA \xrightarrow{\varepsilon_A} A \\
 & & \uparrow Ff \quad \nearrow \tilde{f} \\
 & & FC
 \end{array}$$

Symmetrisation V: proof

Indeed:

$$\begin{array}{ccc}
 FC = FC & \xrightarrow{\quad} & C \xrightarrow{\eta_C} UFC \\
 & & \\
 \downarrow & \xrightarrow{\cong} & \downarrow \\
 \mathbf{A}(FC, FC) & \xrightarrow{\cong} & \mathbf{C}(C, UFC) \\
 & & \\
 \downarrow & \mathbf{A}(FC, f') & \downarrow \mathbf{C}(C, Uf') \\
 & & \\
 \mathbf{A}(FC, A) & \xrightarrow{\cong} & \mathbf{C}(C, UA) \\
 & & \\
 FC \xrightarrow{f'} A & \xrightarrow{\quad} & C \xrightarrow{\eta_C} UFC \\
 & & \\
 & & \downarrow Uf' \\
 & & \xrightarrow{\widetilde{f}'} UA
 \end{array}$$

Symmetrisation V: proof

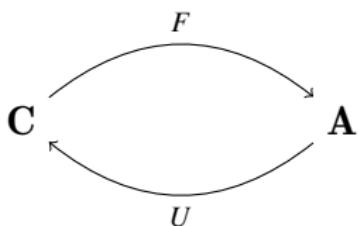
Need to check universal property of \tilde{f} , for $f: C \rightarrow UA$.

- Commutation: $U(\tilde{f}) \circ \eta_C = \tilde{\tilde{f}} = f$.
- Uniqueness:
 - if $U(\tilde{f}') \circ \eta_C = f$,
 - i.e., $\tilde{f}' = f$,
 - then apply $(\widetilde{-})$ to get $f' = \tilde{f}$.

Symmetrisation V

Definition

We call *hom-based adjunction* pairs



equipped with a natural isomorphism

$$\mathbf{C}(C, UA) \cong \mathbf{A}(FC, A).$$

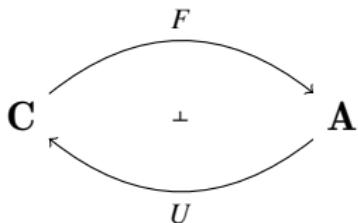
Symmetrisation summary

1-1 correspondences between:

Name	Data	Properties
Rightist adjunction	(U, F_0, η)	$f \mapsto \tilde{f}$
Rightist functorial adjunction	(U, F, η)	$f \mapsto \tilde{f}$
Balanced adjunction	$(U, F, \eta, \varepsilon)$	zig-zag " $\varepsilon \circ \eta = id$ "
Hom-based adjunction	$(U, F, \tilde{\varepsilon})$	natural iso
Leftist functorial adjunction	(F, U, ε)	$f' \mapsto \tilde{f}'$
Leftist adjunction	(F, U_0, ε)	$f' \mapsto \tilde{f}'$

Symmetrisation summary

Notation



- F is called the *left* adjoint.
- U is called the *right* adjoint.
- (\vdash symbol points to left adjoint)

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- **Interlude II: Kleisli category**

- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Interlude II: Kleisli

Fix monad $T: \mathbf{C} \rightarrow \mathbf{C}$.

We have seen $T\text{-Alg} \rightarrow \mathbf{C}$ yields an adjunction.

We saw:

- Unit $\eta_C^T: C \rightarrow TC$.
- Transpose $f: C \rightarrow A$ to $TC \xrightarrow{Tf} TA \xrightarrow{a} A$.

We haven't seen:

- Counit $\varepsilon_A^T: TA \rightarrow A$ given by algebra structure a .
- Transpose $f: TC \rightarrow A$ as $C \xrightarrow{\eta_C^T} TC \xrightarrow{f} A$.

Exercise

Algebra structures and forgetful functor \mathbf{U}^T are implicit here:
reformulate this slide in excruciating detail.

Another adjunction derived from any monad T

Notation

Let $\mathbf{F}^T: \mathbf{C} \rightarrow T\text{-Alg}$ denote the left adjoint.

Definition

Identity-on-objects / fully faithful factorisation

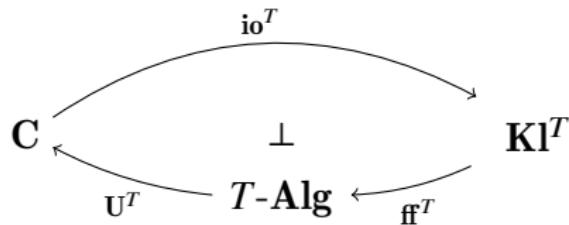
$$\mathbf{C} \xrightarrow{\text{io}_T} \mathbf{Kl}^T \xrightarrow{\text{ff}_T} T\text{-Alg}.$$

- Objects: those of \mathbf{C} .
- Morphism $C \rightarrow D$: algebra morphism $TC \rightarrow TD$.

Another adjunction derived from any monad T

Proposition

Adjunction



Proof

We prove the more general

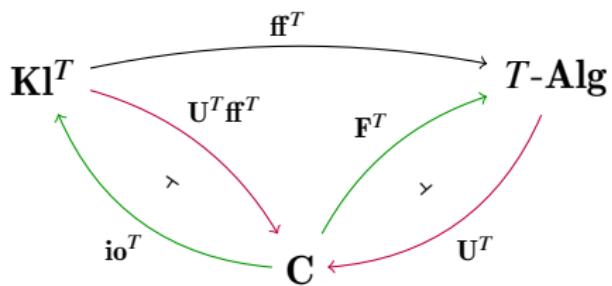
Lemma

For any fully faithful F :

$$\begin{array}{ccc}
 \mathbf{C} & \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{U} \end{array} & \mathbf{K} \xrightarrow{F} \mathbf{A} \\
 & \Rightarrow & \\
 & \mathbf{C} \xleftarrow{U} \mathbf{A} \xleftarrow{F} & \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{U} \end{array} \mathbf{K}
 \end{array}$$

$$\begin{aligned}
 \mathbf{C}(C, UFK) &\cong \mathbf{A}(FLC, FK) && \text{(by adjunction)} \\
 &\cong \mathbf{K}(LC, K) && \text{(by full faithfulness).}
 \end{aligned}$$

Both adjunctions in one picture

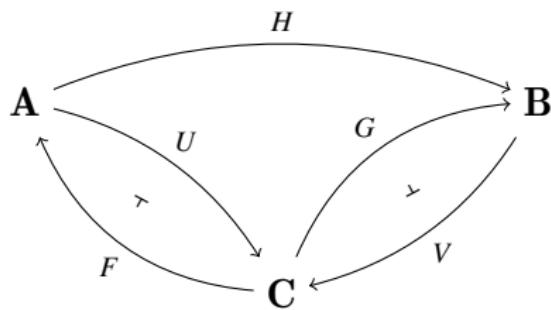


Remark, in passing

Definition (*Resolution of monad T*)

Adjunction $F \dashv U$ such that $UF = T$.

Form a category $\mathbf{Res}(T)$ with morphisms given by H making



commute.

Remark, in passing

Proposition

- $\mathbf{F}^T \dashv \mathbf{U}^T$ is terminal in $\mathbf{Res}(T)$.
- $\mathbf{io}^T \dashv \mathbf{U}^T \mathbf{ff}^T$ is initial in $\mathbf{Res}(T)$.

Back on track

By definition and adjunction, we have a bijection

$$\begin{aligned}\mathbf{Kl}^T(C, D) &= \mathbf{Kl}^T(\mathbf{io}^T C, \mathbf{io}^T D) \\ &\cong T\text{-}\mathbf{Alg}(\mathbf{ff}^T \mathbf{io}^T C, \mathbf{ff}^T \mathbf{io}^T D) \\ &= T\text{-}\mathbf{Alg}(\mathbf{F}^T C, \mathbf{F}^T D) \\ &\cong \mathbf{C}(C, \mathbf{U}^T \mathbf{F}^T D) \\ &\cong \mathbf{C}(C, TD) \\ (f: TC \rightarrow TD) &\mapsto f \circ \eta_C^T.\end{aligned}$$

Back on track

Notation

We write \rightarrow for arrows in \mathbf{Kl}^T .

Proposition (Characterisation of the Kleisli cat)

Across the bijections $\mathbf{Kl}^T(C, D) \cong \mathbf{C}(C, TD)$:

- Identity $C \rightarrow C$ becomes $\eta_C^T : C \rightarrow TC$.

- Composition $C \xrightarrow{f} D \xrightarrow{g} E$ becomes

$$C \xrightarrow{f} TD \xrightarrow{Tg} TTE \xrightarrow{\mu_E^T} TE.$$

Remark

Probably the most frequently used presentation of \mathbf{Kl}^T .

Proof

Direct for identity. Here's composition:

$$\begin{array}{ccc}
 \mathbf{C}(C, TD) \times \mathbf{C}(D, TE) & & C \xrightarrow{f} TD \quad D \xrightarrow{g} TE \\
 \downarrow \cong & & \\
 \mathbf{Kl}^T(C, D) \times \mathbf{Kl}^T(D, E) & & TC \xrightarrow{\mu_D^T \circ Tf} TD \quad TD \xrightarrow{\mu_E^T \circ Tg} TE \\
 \downarrow \circ & & \\
 \mathbf{Kl}^T(C, E) & & TC \xrightarrow{\mu_D^T \circ Tf} TD \xrightarrow{\mu_E^T \circ Tg} TE \\
 \downarrow \cong & & \\
 \mathbf{C}(C, TE) & & C \xrightarrow{\eta_C^T} TC \xrightarrow{Tf} TTD \xrightarrow{\mu_D^T} TD \\
 & & \searrow f \quad \nearrow \eta_{TD}^T \quad \nearrow \mu_D^T \quad \nearrow \eta_E^T \quad \nearrow Tg \\
 & & TD \xrightarrow{Tg} TTE \xrightarrow{\mu_E^T} TE
 \end{array}$$

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category

• Lawvere theories from monads

- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Lawvere theories from monads

Let us revisit the syntactic category \mathbb{L}_Σ , and then generalise.

- Define monad Σ^* .
- Observe $\mathbb{L}_\Sigma \hookrightarrow (\mathbf{Kl}^{\Sigma^*})^{op}$ as the full subcategory $\mathbf{Kl}_\mathbb{F}^{\Sigma^*}$ spanned by finite cardinals.
- Generalise: for any monad T , $\mathbf{Kl}_\mathbb{F}^T$ is a Lawvere theory.

Main idea

Let $T: \mathbf{Set} \rightarrow \mathbf{Set}$ be any monad.

- $T(X)$ thought of as set of terms with free variables in X .
- $n \rightarrow T(m)$: n -tuples of terms with m free variables.
- Exactly the idea behind morphisms $m \rightarrow n$ in syntactic categories of shape \mathbb{L}_Σ .

Let us elaborate.

Free monads

Fix an algebraic signature Σ given by $a: O \rightarrow \mathbb{N}$.

Recall Σ -terms $\Sigma^*(X) = \{X \vdash_{\Sigma} e\}$:

$$\frac{\text{VAR}}{X \vdash_{\Sigma} [x]} \quad (x \in X) \qquad \frac{\text{OP} \quad \begin{matrix} X \vdash_{\Sigma} e_1 & \dots & X \vdash_{\Sigma} e_p \end{matrix}}{X \vdash_{\Sigma} o(e_1, \dots, e_p)} \quad (a(o) = p)$$

- By definition:

$$\begin{aligned} \mathbb{L}_{\Sigma}(m, n) &= \Sigma^*(m)^n \\ &= \mathbf{Set}(n, \Sigma^*(m)) \\ &\cong ? \mathbf{Kl}^{\Sigma^*}(n, m). \end{aligned}$$

Need Σ^* to be a monad.

Functor structure of Σ^*

Σ^* extends to a functor $\mathbf{Set} \rightarrow \mathbf{Set}$.

For any $f: X \rightarrow Y$, let

$$\Sigma^*(f): \Sigma^*(X) \rightarrow \Sigma^*(Y)$$

$$[x] \mapsto [f(x)]$$

$$o(e_1, \dots, e_p) \mapsto o(\Sigma^*(f)(e_1), \dots, \Sigma^*(f)(e_p)).$$

“Rename variables according to f .”

Monad structure of Σ^*

- Unit $[-]: X \rightarrow \Sigma^*(X)$
- Multiplication $\Sigma^*(\Sigma^*(X)) \rightarrow \Sigma^*(X)$.
 - Elements of $\Sigma^*(\Sigma^*(X))$: brackets contain terms.
 - Multiplication: remove outer brackets.
 - Example: $o(o([o([x], [y])], [[x]]), [o([y], [y])])$.
- Monad equations ($T = \Sigma^*$) reminder.

$$\begin{array}{ccc}
 T(X) & \xrightarrow{\eta_{T(X)}} & T(T(X)) & \xleftarrow{T(\eta_X)} & T(X) \\
 & \searrow & \downarrow \mu_X & \swarrow & \\
 & & T(X) & &
 \end{array}
 \qquad
 \begin{array}{ccc}
 T(T(T(X))) & \xrightarrow{T(\mu_X)} & T(T(X)) \\
 \mu_{T(X)} \downarrow & & \downarrow \mu_X \\
 T(T(X)) & \xrightarrow[\mu_X]{} & T(X)
 \end{array}$$

Exercise

Check them (not necessarily too formally).

Monad structure of Σ^*

$$\begin{array}{ccc}
 T(X) & \xrightarrow{\eta_{T(X)}} & T(T(X)) & \xleftarrow{T(\eta_X)} & T(X) \\
 & \searrow \mu_X & & \swarrow & \\
 & T(X) & & &
 \end{array}
 \qquad
 \begin{array}{ccc}
 T(T(T(X))) & \xrightarrow{T(\mu_X)} & T(T(X)) \\
 \mu_{T(X)} \downarrow & & \downarrow \mu_X \\
 T(T(X)) & \xrightarrow{\mu_X} & T(X)
 \end{array}$$

- Remove outer brackets in $[e]$ yields e .
- Replace each $[x]$ with $[[x]]$ in e , then remove outer brackets yields e .
- Given term with three bracket layers:
 - remove outer, then middle, and
 - remove middle, then outer

agree.

Syntactic vs Kleisli

Definition

Let $\mathbf{Kl}_{\mathbb{F}}^{\Sigma^*} \hookrightarrow \mathbf{Kl}^{\Sigma^*}$ denote the full subcategory spanned by finite cardinals.

Proposition

$$\mathbb{L}_{\Sigma} \cong (\mathbf{Kl}_{\mathbb{F}}^{\Sigma^*})^{op}.$$

“Syntactic category = op-Kleisli restricted to \mathbb{F} .”

Syntactic vs Kleisli

Proposition

$$\mathbb{L}_\Sigma \cong (\mathbf{Kl}_\mathbb{F}^{\Sigma^*})^{op}.$$

Proof.

We have proved the graphs agree.

- Identities: $\eta_n: n \rightarrow \Sigma^*(n)$ does correspond to $\langle [1], \dots, [n] \rangle$.
- Composition $m \xrightarrow{f} \Sigma^*(n)$, $n \xrightarrow{g} \Sigma^*(p)$.
 - By substitution in \mathbb{L}_Σ .
 - In the Kleisli, j th term is
 - $f(j)$,
 - with each $[i]$ replaced with $g(i)$, i.e.,... substitution.

□

Generalisation

Proposition

For any monad $T: \mathbf{Set} \rightarrow \mathbf{Set}$, $(\mathbf{Kl}_F^T)^{op}$ is a Lawvere theory.

Proof.

- Small: ✓.
- Skeletal: ✓.
- Finite products:
 - F has finite coproducts and
 - $F \hookrightarrow \mathbf{Kl}^T$ preserves them (exercise!);
 - so does $F \hookrightarrow \mathbf{Kl}_F^T$ by full faithfulness,
 - hence \mathbf{Kl}_F^T has finite coproducts.
- Power generation: every n is $\underbrace{1 + \dots + 1}_{n \text{ times}}$. □

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- **Monads from Lawvere theories**
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Monads from Lawvere theories

Let us now sketch the other direction:

monads \rightarrow Lawvere theories

saving functoriality of the correspondence for later.

Starting point

Let us fix a Lawvere theory \mathbb{L} .

Idea:

$$\begin{aligned}\mathbb{F} &\rightarrow \mathbf{Set} \\ n &\mapsto \mathbb{L}(n, 1).\end{aligned}$$

How to extend this to arbitrary sets?

A first extension

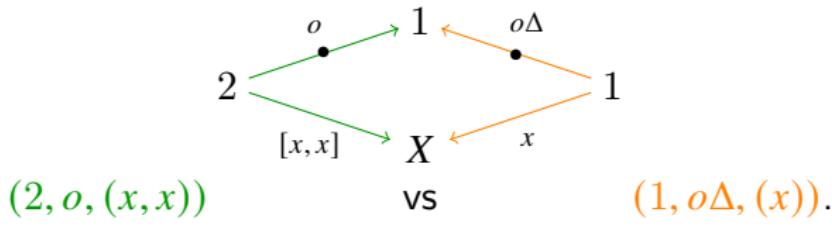
Definition

$$\mathbf{T}_{\mathbb{L}}^0(X) = \coprod_{n \in \mathbb{F}} \mathbb{L}(n, 1) \times X^n.$$

“A term with interpretation of variables in X ”.

Problem

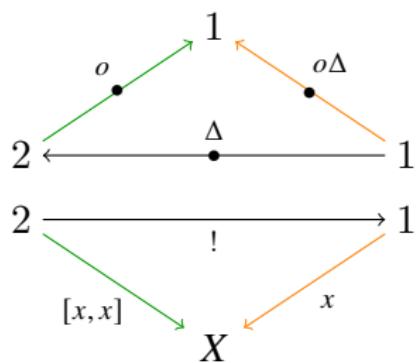
Too fine: two distinct ways of representing $o(x, x)$.



(Here, $\Delta: 1 \rightarrow 2$ is $\langle id_1, id_1 \rangle$.)

Solution: quotient out

In the example:



Solution: quotient out

In general, let

$$(m, h, v) \sim (n, k, w)$$

for any $f: m \rightarrow n$ making the following commute.

$$\begin{array}{ccc}
 & \begin{array}{c} 1 \\ \nearrow h \quad \searrow k \\ \bullet \quad \bullet \end{array} & \\
 m & \xleftarrow{f} & n \\
 & \begin{array}{c} f \\ \searrow v \quad \nearrow w \\ \bullet \quad \bullet \end{array} & \\
 m & \xrightarrow{f} & n \\
 & \searrow v & \nearrow w \\
 & X &
 \end{array}$$

Otherwise said

$$\text{For all, } X \xleftarrow{w} n \xleftarrow{f} m \xrightarrow{h} 1, \quad (m, h, wf) \sim (n, hf, w).$$

Your first coend

Definition

Let $\mathbf{T}_{\mathbb{L}}(X) = (\coprod_n \mathbb{L}(n, 1) \times X^n)/\sim$.

Remark

- Standard notation $\int^n \mathbb{L}(n, 1) \times X^n$.
- Called a coend.
- Satisfies universal property.

$$\begin{array}{ccc}
 \mathbb{F} & \xrightarrow{\quad} & \mathbf{Set} \\
 & \searrow \mathbb{L}(-, 1) & \swarrow \lambda_{\mathbb{L}} \\
 & & \mathbf{Set} \\
 & \swarrow & \searrow \\
 & \mathbf{T}_{\mathbb{L}} &
 \end{array}$$

Next goal

Show that $\mathbf{T}_{\mathbb{L}}$ is indeed a monad.

Without all technical detail.

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads**
- Lawvere theories to monads, continued
- Functoriality

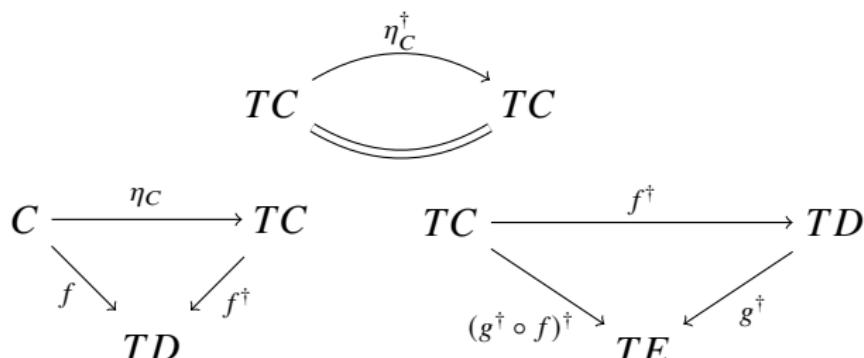
④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

First step: Kleisli presentation of monads

Definition (*hom-based monad* on category \mathbf{C})

- Object assignment $T: \mathbf{ob}(\mathbf{C}) \rightarrow \mathbf{ob}(\mathbf{C})$.
- *Unit* $\eta_C: C \rightarrow TC$.
- *Kleisli lifting*: $\mathbf{C}(C, TD) \rightarrow \mathbf{C}(TC, TD)$.
- Axioms:



Monads to hom-based monads

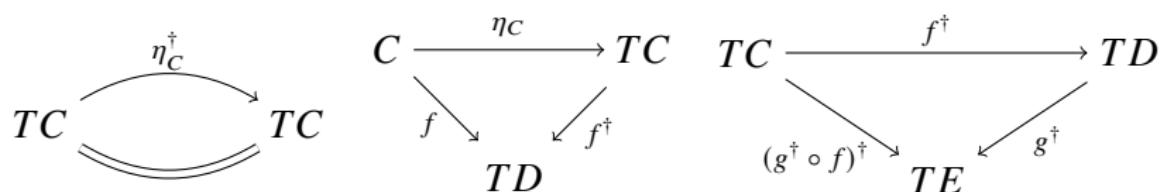
Proposition

Every monad T yields a hom-based monad with

- obvious object assignment $T: \mathbf{ob}(\mathbf{C}) \rightarrow \mathbf{ob}(\mathbf{C})$,
- obvious unit $\eta_C^T: C \rightarrow TC$,
- Kleisli lifting $\mathbf{C}(C, TD) \rightarrow \mathbf{C}(TC, TD)$

$$C \xrightarrow{f} TP \quad \mapsto \quad TC \xrightarrow{Tf} TTP \xrightarrow{\mu_D^T} TD.$$

Exercise: check the axioms



Axiom 1

$$\begin{array}{ccc} & T\eta_A^T: TA \rightarrow TTA & \mu_A^T: TTA \rightarrow TA \\ TA & \swarrow & \searrow \\ & TA & \end{array}$$

Axiom 2

$$\begin{array}{ccc} C & \xrightarrow{\eta_C^T} & TC \\ f \downarrow & & \downarrow Tf \\ TD & \xrightarrow{\eta_{TD}^T} & TTD \\ & \searrow & \downarrow \mu_D^T \\ & & TD \end{array}$$

Axiom 3

$$\begin{array}{ccccc}
 TC & \xrightarrow{Tf} & TTD & \xrightarrow{\mu_D^T} & TD \\
 \downarrow T(g^\dagger \circ f) & & \downarrow TTg & & \downarrow Tg \\
 & & TTTE & \xrightarrow{\mu_{TE}^T} & TTE \\
 & & \swarrow T(\mu_E^T) & & \downarrow \mu_E^T \\
 TTE & \xrightarrow{\mu_E^T} & TE & &
 \end{array}$$

Converse

Proposition

Every hom-based monad T yields a proper monad with

- obvious object assignment $T: \mathbf{ob}(\mathbf{C}) \rightarrow \mathbf{ob}(\mathbf{C})$,
- morphism assignment $\mathbf{C}(C, D) \rightarrow \mathbf{C}(TC, TD)$

$$C \xrightarrow{f} D \mapsto (\eta_D \circ f)^\dagger,$$
- obvious unit $\eta_C^T: C \rightarrow TC$,
- multiplication μ_C given by id_{TC}^\dagger .

Exercise: check the axioms

$$\begin{array}{ccc}
 T(X) & \xrightarrow{\eta_{T(X)}} & T(T(X)) & \xleftarrow{T(\eta_X)} & T(X) \\
 & \searrow \mu_X & \swarrow & & \\
 & T(X) & & &
 \end{array}
 \qquad
 \begin{array}{ccc}
 T(T(T(X))) & \xrightarrow{T(\mu_X)} & T(T(X)) \\
 \mu_{T(X)} \downarrow & & \downarrow \mu_X \\
 T(T(X)) & \xrightarrow{\mu_X} & T(X)
 \end{array}$$

Axiom 1

$$\begin{array}{ccccc} T(C) & \xrightarrow{\eta_{T(C)}} & T(T(C)) & \xleftarrow{T(\eta_C)} & T(C) \\ & \searrow & \downarrow id_{TC}^\dagger & \swarrow & \\ & & T(C) & & \end{array}$$

Axiom 2

$$\begin{array}{ccc} T(T(C)) & \xleftarrow{(\eta_{TC} \circ \eta_C)^\dagger} & T(C) \\ id_{TC}^\dagger \downarrow & \swarrow (id_{TC}^\dagger \circ \eta_{TC} \circ \eta_C)^\dagger & \nearrow \eta_C^\dagger \\ T(C) & \xleftarrow{\quad} & \end{array}$$

Axiom 3

$$\begin{array}{ccc}
 T(T(T(X))) & \xrightarrow{(\eta_{TX} \circ id_{TX}^\dagger)^\dagger} & T(T(X)) \\
 \downarrow id_{TTX}^\dagger & \searrow id_{TX}^\dagger & \downarrow id_{TX}^\dagger \\
 T(T(X)) & \xrightarrow{id_{TX}^\dagger} & T(X)
 \end{array}$$

$(\eta_{TX} \circ id_{TX}^\dagger)^\dagger$
 $(id_{TX}^\dagger \circ \eta_{TX} \circ id_{TX}^\dagger)^\dagger$
 $(id_{TX}^\dagger \circ id_{TTX})^\dagger$
 $id_{TX}^{\dagger\dagger}$

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued**
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Next goal

Show that $\mathbf{T}_{\mathbb{L}}$ is indeed a **hom-based** monad.

Without all technical detail.

Kleisli lifting

$$\mathbf{Set}(X, \mathbf{T}_{\mathbb{L}} Y) \rightarrow \mathbf{Set}(\mathbf{T}_{\mathbb{L}} X, \mathbf{T}_{\mathbb{L}} Y)$$

- Let $\sigma: X \rightarrow \mathbf{T}_{\mathbb{L}} Y$ and $e \in \mathbf{T}_{\mathbb{L}} X$.
- Pick representative $X \xleftarrow{v} n \xrightarrow{h} 1$ for e .
- Only the composite $n \xrightarrow{v} X \xrightarrow{\sigma} \mathbf{T}_{\mathbb{L}} Y$ will matter.
- Pick representative of e'_i for each $\sigma v(i)$, $i \in n$, say

$$Y \xleftarrow{v'_i} p_i \xrightarrow{h'_i} 1.$$

- Return

$$Y \xleftarrow{[v'_i]_i} \sum_i p_i \xrightarrow{\langle h'_i \circ \pi_i \rangle} n \xrightarrow{h} 1.$$

Detail omitted

This forms a hom-based monad.

Upshot: unitality and associativity boil down to unitality and associativity of composition in \mathbb{L} .

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- **Functionality**

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Category of monads

Definition ($\mathbf{Mnd}(\mathbf{C})$)

- Objects: monads on \mathbf{C} .
- Morphism $(T, \mu, \eta) \rightarrow (T', \mu', \eta')$: any $\alpha: T \rightarrow T'$ making the following commute.

$$\begin{array}{ccc}
 & id_{\mathbf{C}} & \\
 & \swarrow \quad \searrow & \\
 T & \xrightarrow{\alpha} & T' \\
 & \eta \quad \quad \quad \eta' & \\
 & \downarrow & \\
 TT & \xrightarrow{\alpha \circ_0 \alpha} & T'T' \\
 & \downarrow \mu & \downarrow \mu' \\
 T & \xrightarrow{\alpha} & T'
 \end{array}$$

Functorial action $\mathbf{Mnd}(\mathbf{Set}) \rightarrow \mathbf{Law}$

Proposition

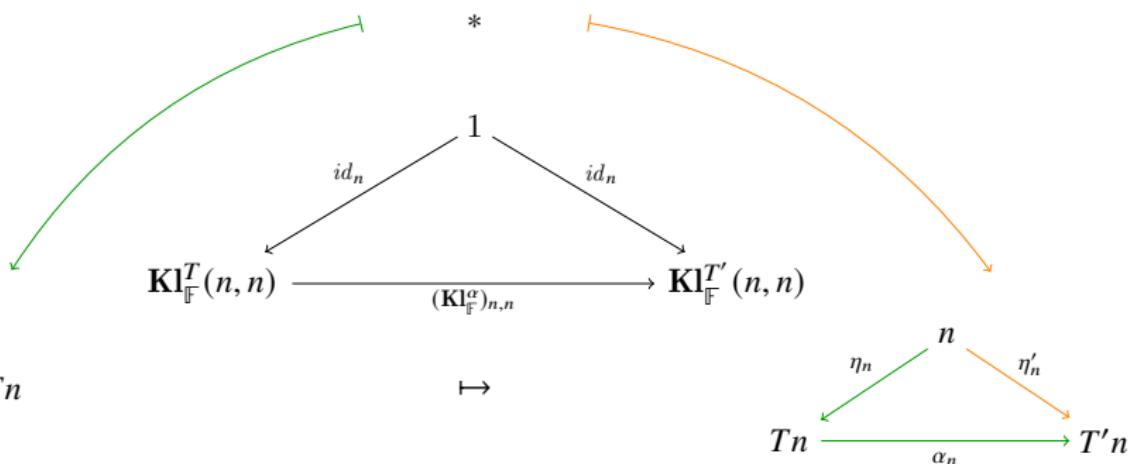
Monad morphism $\alpha: (T, \mu, \eta) \rightarrow (T', \mu', \eta')$
 \rightsquigarrow Lawvere theory morphism

$$\mathbf{Kl}_{\mathbb{F}}^{\alpha}: \mathbf{Kl}_{\mathbb{F}}^T \rightarrow \mathbf{Kl}_{\mathbb{F}}^{T'}$$

$$n \mapsto n$$

$$(n \xrightarrow{f} Tp) \mapsto (n \xrightarrow{f} Tp \xrightarrow{\alpha_p} T'p).$$

Proof: functoriality of $\mathbf{Kl}_{\mathbb{F}}^{\alpha}: \mathbf{Kl}_{\mathbb{F}}^T \rightarrow \mathbf{Kl}_{\mathbb{F}}^{T'}$



Proof: functoriality of $\mathbf{Kl}_{\mathbb{F}}^{\alpha}: \mathbf{Kl}_{\mathbb{F}}^T \rightarrow \mathbf{Kl}_{\mathbb{F}}^{T'}$

$$\begin{array}{ccc}
 \begin{array}{ccc}
 m \xrightarrow{f} Tn & \mapsto & m \xrightarrow{f} Tn \xrightarrow{\alpha_n} T'n \\
 n \xrightarrow{g} Tp & & n \xrightarrow{g} Tp \xrightarrow{\alpha_p} T'p
 \end{array} \\
 \mathbf{Kl}_{\mathbb{F}}^T(m, n) \times \mathbf{Kl}_{\mathbb{F}}^T(n, p) \xrightarrow{(\mathbf{Kl}_{\mathbb{F}}^{\alpha})_{m, n} \times (\mathbf{Kl}_{\mathbb{F}}^{\alpha})_{n, p}} \mathbf{Kl}_{\mathbb{F}}^{T'}(m, n) \times \mathbf{Kl}_{\mathbb{F}}^{T'}(n, p) \\
 \downarrow \qquad \qquad \downarrow \circ \qquad \qquad \downarrow \circ' \qquad \qquad \downarrow \\
 \mathbf{Kl}_{\mathbb{F}}^T(m, p) \xrightarrow{(\mathbf{Kl}_{\mathbb{F}}^{\alpha})_{m, p}} \mathbf{Kl}_{\mathbb{F}}^{T'}(m, p)
 \end{array}$$

$$\begin{array}{ccc}
 \begin{array}{ccc}
 m \xrightarrow{f} Tn \xrightarrow{Tg} TTp \xrightarrow{\mu} Tp & \mapsto & m \xrightarrow{f} Tn \xrightarrow{\alpha_n} T'n \\
 & & f \downarrow \quad \swarrow \quad T'g \downarrow \\
 & Tn & T'n \\
 Tg \downarrow & & \nearrow \alpha_{Tp} \\
 TTp & \xrightarrow{(\alpha \circ_0 \alpha)_p} & T'T'p \\
 \mu \downarrow & & \downarrow \mu'_p \\
 Tp & \xrightarrow{\alpha_p} & T'p
 \end{array}
 \end{array}$$

Proof functoriality of $\mathbf{Kl}_{\mathbb{F}}$

- We saw: each $\mathbf{Kl}_{\mathbb{F}}^{\alpha}: \mathbf{Kl}_{\mathbb{F}}^T \rightarrow \mathbf{Kl}_{\mathbb{F}}^{T'}$ is a functor.
- Now is $\mathbf{Kl}_{\mathbb{F}}: \mathbf{Mnd}(\mathbf{Set}) \rightarrow \mathbf{Law}$ functorial?
- I.e., given

$$T \xrightarrow{\alpha} T' \xrightarrow{\beta} T'',$$

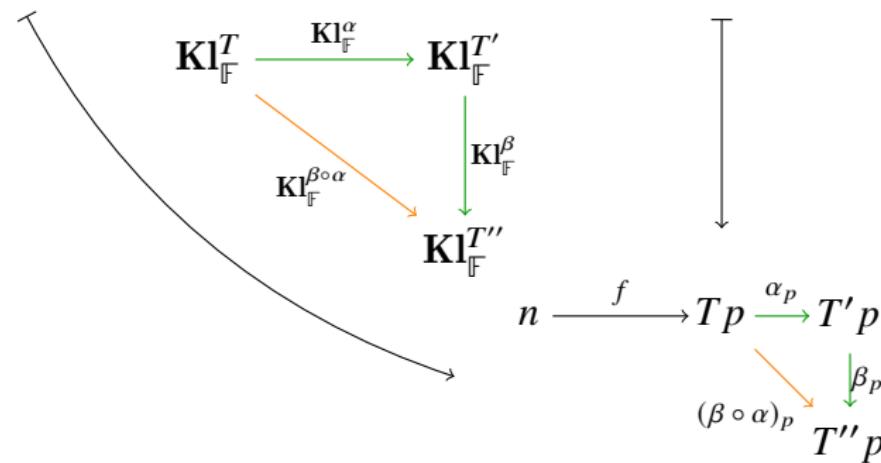
does the following commute?

$$\begin{array}{ccc}
 \mathbf{Kl}_{\mathbb{F}}^T & \xrightarrow{\mathbf{Kl}_{\mathbb{F}}^{\alpha}} & \mathbf{Kl}_{\mathbb{F}}^{T'} \\
 & \searrow \mathbf{Kl}_{\mathbb{F}}^{\beta \circ \alpha} & \downarrow \mathbf{Kl}_{\mathbb{F}}^{\beta} \\
 & & \mathbf{Kl}_{\mathbb{F}}^{T''}
 \end{array}$$

Proof functoriality of $\mathbf{Kl}_{\mathbb{F}}$

Easy:

$$n \xrightarrow{f} Tp \quad \longmapsto \quad n \xrightarrow{f} Tp \xrightarrow{\alpha_p} T'p$$



Functorial action $\mathbf{Law} \rightarrow \mathbf{Mnd}(\mathbf{Set})$

Let $F: \mathbb{K} \rightarrow \mathbb{L}$ in \mathbf{Law} .

- Induced natural transformation

$$\begin{aligned} \mathbf{T}_{\mathbb{K}}(X) &\rightarrow \mathbf{T}_{\mathbb{L}}(X) \\ \int^n \mathbb{K}(n, 1) \times X^n &\rightarrow \int^n \mathbb{L}(n, 1) \times X^n \\ [n, h, v] &\mapsto [n, F(h), v]. \end{aligned}$$

- Naturality: excercise!

Naturality

$$\begin{array}{ccc}
 X \xleftarrow{v} n \xrightarrow{h} 1 & \xrightarrow{\hspace{3cm}} & X \xleftarrow{v} n \xrightarrow{Fh} 1 \\
 & & \\
 \begin{array}{ccc}
 \int^n \mathbb{K}(n, 1) \times X^n & \xrightarrow{\int^n F_{n,1} \times X^n} & \int^n \mathbb{L}(n, 1) \times X^n \\
 \downarrow & \downarrow & \downarrow \\
 \int^n \mathbb{K}(n, 1) \times f^n & & \int^n \mathbb{L}(n, 1) \times f^n \\
 \downarrow & & \downarrow \\
 \int^n \mathbb{K}(n, 1) \times Y^n & \xrightarrow{\int^n F_{n,1} \times Y^n} & \int^n \mathbb{L}(n, 1) \times Y^n
 \end{array} & & \begin{array}{ccc}
 Y \xleftarrow{f} X \xleftarrow{v} n \xrightarrow{h} 1 & \xrightarrow{\hspace{3cm}} & Y \xleftarrow{f} X \xleftarrow{v} n \xrightarrow{Fh} 1
 \end{array}
 \end{array}$$

Functionality of T : $\mathbf{Law} \rightarrow \mathbf{Mnd}(\mathbf{Set})$

Given $\mathbb{H} \xrightarrow{F} \mathbb{K} \xrightarrow{G} \mathbb{L}$, does the following commute?

$$\begin{array}{ccc} \mathbf{T}_{\mathbb{H}} & \xrightarrow{\mathbf{T}_F} & \mathbf{T}_{\mathbb{K}} \\ & \searrow \mathbf{T}_{GF} & \downarrow \mathbf{T}_G \\ & & \mathbf{T}_{\mathbb{L}} \end{array}$$

Functionality of T : $\mathbf{Law} \rightarrow \mathbf{Mnd}(\mathbf{Set})$

Given $\mathbb{H} \xrightarrow{F} \mathbb{K} \xrightarrow{G} \mathbb{L}$, does the following commute?

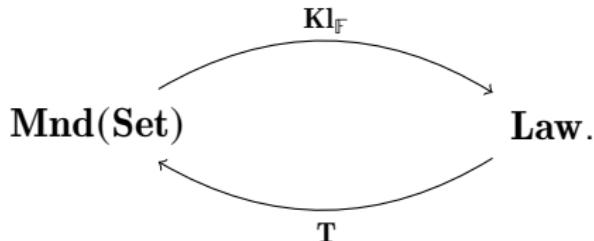
$$X \xleftarrow{\sigma} n \xrightarrow{h} 1 \quad \vdash \longrightarrow \quad X \xleftarrow{\sigma} n \xrightarrow{Fh} 1$$

$$\begin{array}{ccc}
 \mathbf{T}_{\mathbb{H}}(X) & \xrightarrow{(\mathbf{T}_F)_X} & \mathbf{T}_{\mathbb{K}}(X) \\
 & \searrow (\mathbf{T}_{GF})_X & \downarrow (\mathbf{T}_G)_X \\
 & & \mathbf{T}_{\mathbb{L}}(X)
 \end{array}$$

$X \xleftarrow{\sigma} n \xrightarrow{GFh} 1$

Summary

We have functors:



Do they form an equivalence?

No. Can anyone guess why?

The working side

Lemma

For any $\mathbb{L} \in \mathbf{Law}$ and $n \in \mathbb{N}$, the map

$$\mathbb{L}(n, 1) \rightarrow \mathbf{T}_{\mathbb{L}}(n)$$

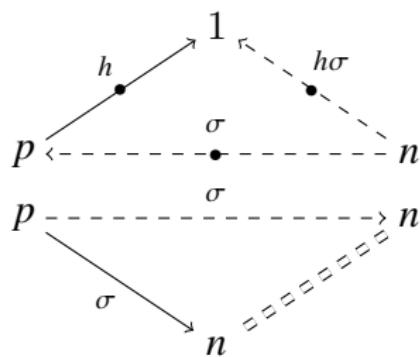
$$(n \xrightarrow{h} 1) \mapsto (n \xleftarrow{id_n} n \xrightarrow{h} 1)$$

is bijective.

The working side

Proof.

Surjectivity.

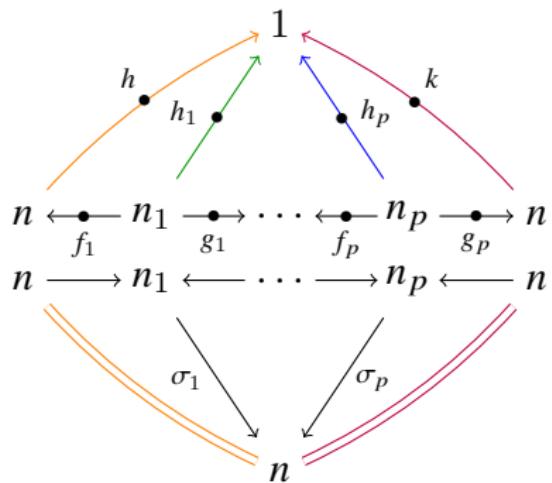


□

The working side

Proof.

Injectivity. Not so easy!



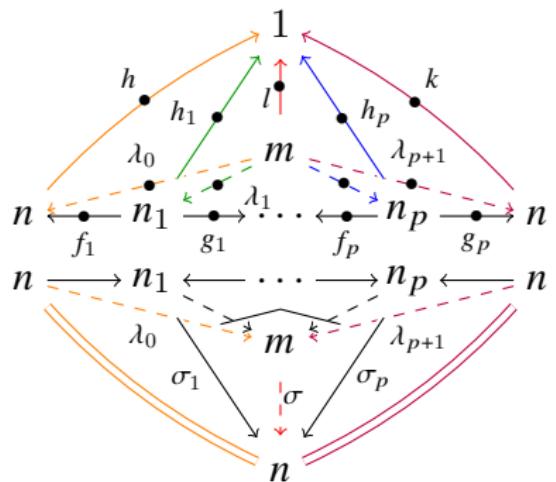
Consider any $(h, id_n) \sim (k, id_n)$.
Need $h = k$.

□

The working side

Proof.

Finite zig-zag \rightsquigarrow take colimit in \mathbf{Set} : in \mathbb{F} .



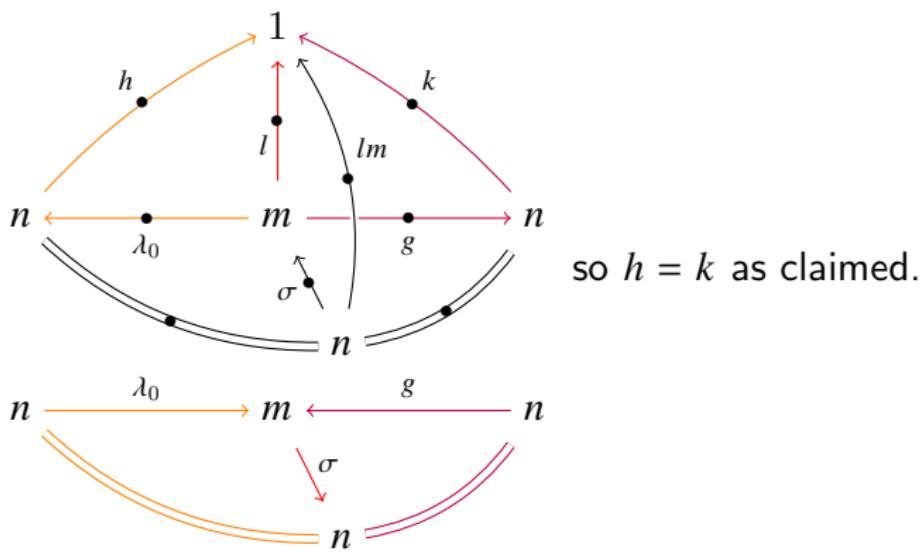
$$\begin{aligned}
 l &:= h\lambda_0 &= h(f_1\lambda_1) \\
 &= h_1\lambda_1 \\
 &\dots \\
 &= h_p\lambda_p \\
 &= (kg_p)\lambda_p) \\
 &= k\lambda_{p+1}.
 \end{aligned}$$

□

The working side

Proof.

Injectivity.



The working side

We have proved $\mathbb{L}(n, 1) \rightarrow \mathbf{T}_{\mathbb{L}}(n)$ bijective.

Corollary

$$\mathbb{L} \cong \mathbf{Kl}_{\mathbb{F}}^{\mathbf{T}_{\mathbb{L}}}.$$

Proof.

$$\begin{aligned}\mathbb{L}(n, p) &\cong \mathbb{L}(n, 1)^p \\ &\cong \mathbf{T}_{\mathbb{L}}(n)^p && \text{(by the lemma)} \\ &= \mathbf{Kl}_{\mathbb{F}}^{\mathbf{T}_{\mathbb{L}}}(p, n).\end{aligned}\quad \square$$

The working side

We have proved $\mathbb{L}(n, 1) \rightarrow \mathbf{T}_{\mathbb{L}}(n)$ bijective.

Corollary

$\mathbf{T}: \mathbf{Law} \rightarrow \mathbf{Mnd}(\mathbf{Set})$ is fully faithful.

Proof sketch.

- Consider any $\alpha: \mathbf{T}_{\mathbb{K}} \rightarrow \mathbf{T}_{\mathbb{L}}$ in $\mathbf{Mnd}(\mathbf{Set})$.
- Let $\bar{\alpha}_n$ denote:

$$\mathbb{K}(n, 1) \xrightarrow{\cong} \mathbf{T}_{\mathbb{K}}(n) \xrightarrow{\alpha_n} \mathbf{T}_{\mathbb{L}}(n) \xrightarrow{\cong} \mathbb{L}(n, 1)$$

- Then define $\alpha'_{p,q}$ by

$$\mathbb{K}(n, p) \xrightarrow{\cong} \mathbb{K}(n, 1)^p \xrightarrow{\cong} \mathbf{T}_{\mathbb{K}}(n)^p \xrightarrow{\alpha_n^p} \mathbf{T}_{\mathbb{L}}(n)^p \xrightarrow{\cong} \mathbb{L}(n, 1)^p \xrightarrow{\cong} \mathbb{L}(n, p)$$

- Show this defines a unique antecedent of α . □

The glitch

- Start from $F(X) = X^{\mathbb{N}}$.
- Consider $T = F^*$: $T(X) = \text{set of finite-depth, } \mathbb{N}\text{-branching trees with leaves in } X$.
- $\mathbf{Kl}_{\mathbb{F}}^T(n, 1)$: same, with leaves in n .
- $\mathbf{T}_{\mathbf{Kl}_{\mathbb{F}}^T}(X) = \int^n T(n) \times X^n \hookrightarrow T(X)$:

trees with finitely many distinct leaves!

The glitch

T is not **finitary**.

Definition

A functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$ is *finitary* if any $1 \rightarrow T(X)$ factors as

$$1 \xrightarrow{\xi} T(n) \xrightarrow{T(\sigma)} T(X).$$

(Counter?)example

Powerset functor \mathcal{P} .

The theorem

Definition

Let $\mathbf{Mnd}_f(\mathbf{Set}) \hookrightarrow \mathbf{Mnd}(\mathbf{Set})$ denote the full subcategory on finitary monads.

Recall:

$$\begin{aligned}
 \mathbf{Law} &\rightarrow \mathbf{CAT}/\mathbf{Set} \\
 \mathbb{L} &\mapsto \left(\begin{array}{ccc} \mathbf{Mod}(\mathbb{L}) & \xrightarrow{U^{\mathbb{L}}} & \mathbf{Set} \\ M & \mapsto & M(1) \end{array} \right) \\
 \mathbf{Mnd}(\mathbf{Set}) &\rightarrow \mathbf{CAT}/\mathbf{Set} \\
 T &\mapsto \left(\begin{array}{ccc} T\text{-Alg} & \xrightarrow{U^T} & \mathbf{Set} \\ (TA \xrightarrow{\rho} A) & \mapsto & A \end{array} \right)
 \end{aligned}$$

The theorem

Theorem

We have

$$\begin{array}{ccc} \mathbf{Law} & \xrightarrow{\simeq} & \mathbf{Mnd}_f(\mathbf{Set}) \\ & \searrow & \swarrow \\ & \simeq & \\ & \mathbf{CAT}/\mathbf{Set} & \end{array}$$

Only part not covered yet: semantics preservation.

A pullback in \mathbf{CAT}

Let $\mathbf{i}_{\mathbb{F}}^*(X)(n) = \mathbf{Set}(n, X) = X^n$.

$$\begin{array}{ccc}
 \mathbf{P}_{\mathbb{L}} & \dashrightarrow & [\mathbb{L}, \mathbf{Set}] \\
 \downarrow \mathbf{p}_{\mathbb{L}} & \lrcorner & \downarrow \\
 \mathbf{Set} & \xrightarrow{\mathbf{i}_{\mathbb{F}}^*} & [\mathbb{F}^{op}, \mathbf{Set}]
 \end{array}$$

Object of $\mathbf{P}_{\mathbb{L}}$: set X , together with

- $X^h: X^n \rightarrow X^p$ for all $h: n \rightarrow p$ in \mathbb{L} ,
- functorially,
- agrees with restriction on \mathbb{F}^{op} .

Morphism $X \rightarrow Y$:

$$X^n \xrightarrow{f^n} Y^n$$

- map $f: X \rightarrow Y$ with $\begin{array}{ccc} X^h & \downarrow & Y^h \\ \downarrow & & \downarrow \\ X^p & \xrightarrow{f^p} & Y^p \end{array}$

First step

Lemma

We have $\mathbf{P}_{\mathbb{L}} \simeq [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$ over sets.

Proof of $\mathbf{P}_{\mathbb{L}} \simeq [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$

Object: set X , together with

- $X^h: X^n \rightarrow X^p$ for all $h: n \rightarrow p$,
- functorially,
- agrees with restriction on \mathbb{F}^{op} .

Proof of $\mathbf{P}_{\mathbb{L}} \simeq [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$

Object: set X , together with

- $X^h: X^n \rightarrow X^p$ for all $h: n \rightarrow p$,
- functorially,
- agrees with restriction on \mathbb{F}^{op} .
- \rightsquigarrow preserves projections, hence products.

Proof of $\mathbf{P}_{\mathbb{L}} \simeq [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$

Object: set X , together with

- $X^h: X^n \rightarrow X^p$ for all $h: n \rightarrow p$,
- functorially,
- agrees with restriction on \mathbb{F}^{op} .
- \rightsquigarrow preserves projections, hence products.

\rightsquigarrow object = strict model of \mathbb{L} , i.e., $M(n) = M(1)^n$.

Proof of $\mathbf{P}_{\mathbb{L}} \simeq [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$

We obtain a functor $\mathbf{P}_{\mathbb{L}} \rightarrow [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$.

- Objects embed as **strict** models.
- Morphisms f yield transformations $\alpha_n := f^n: X^n \rightarrow Y^n$.

Now:

- Surjective on objects.
- Faithful.
- Full?

Proof of $\mathbf{P}_{\mathbb{L}} \simeq [\mathbb{L}, \mathbf{Set}]_{\text{fp}}$: fullness

For any natural transformation $\alpha: M \rightarrow N$ between models, taking $h = \pi_i$, $i \in n$:

$$\begin{array}{ccc} X^n & \xrightarrow{\alpha_n} & Y^n \\ \pi_i \downarrow & & \downarrow \pi_i \\ X & \xrightarrow{\alpha_1} & Y \end{array}$$

Taking $f = \alpha_1$, we have $\alpha_n = f^n$.

Second step

Lemma

We have $\mathbf{P}_{\mathbb{L}} \simeq \mathbf{T}_{\mathbb{L}}\text{-Alg}$ over sets.

Proof sketch of $\mathbf{P}_{\mathbb{L}} \simeq \mathbf{T}_{\mathbb{L}}\text{-Alg}$

Given set X with suitable actions $X^h: X^n \rightarrow X^p$.

$\mathbf{T}_{\mathbb{L}}$ -algebra structure:

- given any $[h, \sigma] \in \mathbf{T}_{\mathbb{L}}(X)$, as in

$$X \xleftarrow{\sigma} n \xrightarrow{h} 1,$$

- return $1 \xrightarrow{\lceil \sigma \rceil} X^n \xrightarrow{X^h} X$.

Omitted: check of monad algebra laws.

Conclusion

We have shown

$$\mathbf{Mod}(\mathbb{L}) \simeq \mathbf{P}_{\mathbb{L}} \cong \mathbf{T}_{\mathbb{L}}\text{-Alg}$$

over sets, as desired, hence:

Theorem

We have

$$\begin{array}{ccc} \mathbf{Law} & \xrightarrow{\simeq} & \mathbf{Mnd}_f(\mathbf{Set}) \\ & \searrow & \swarrow \\ & \simeq & \\ & \mathbf{CAT}/\mathbf{Set} & \end{array}$$

Outline

③ Linton's theorem

- Introduction
- Syntactic categories
- Lawvere theories and their models
- Interlude I: adjunctions
- Interlude II: Kleisli category
- Lawvere theories from monads
- Monads from Lawvere theories
- Interlude: hom-based monads
- Lawvere theories to monads, continued
- Functoriality

④ Grothendieck's nerve theorem and the Segal condition

⑤ Sketching a general correspondence between monads and theories

Outline

- ③ Linton's theorem
 - Introduction
 - Syntactic categories
 - Lawvere theories and their models
 - Interlude I: adjunctions
 - Interlude II: Kleisli category
 - Lawvere theories from monads
 - Monads from Lawvere theories
 - Interlude: hom-based monads
 - Lawvere theories to monads, continued
 - Functoriality
- ④ Grothendieck's nerve theorem and the Segal condition
- ⑤ Sketching a general correspondence between monads and theories

Part III

Technical bases

Outline

⑥ Monadicity

⑦ Locally presentable categories

Outline

⑥ Monadicity

⑦ Locally presentable categories

Part IV

Correspondence between monads and
theories, take 2

Outline

⑧ Adjunction between monads and theories