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1 INTRODUCTION
In this paper, we show that Bruggink et al.’s conditional calculus [1]
is an inductively generated, subhyperdoctrine of a very simple

hyperdoctrine, obtained using basic, well-known results.

Defining this hyperdoctrine is a mere one-liner; the paper is only

a bit longer to explain how to interpret the various constructions

of conditional calculus in this setting.

Plan. In §2, we briefly recall the definition of hyperdoctrines

and construct the relevant one for us, which we call the subhom
hyperdoctrine. In §3, we review the constructions of conditional

calculus and interpret them in the subhom hyperdoctrine. We then

explain the sense in which some of the peculiarities of conditional

calculus may be viewed as arising from good properties of the

subhom hyperdoctrine, namely the Beck-Chevalley condition (§4)

and Frobenius reciprocity (§5). Finally, we conclude in §6. Some

proofs of merely technical interest are deferred to Appendix A.

2 THE SUBHOM HYPERDOCTRINE
In this section, we briefly recall the definition of hyperdoctrines

and construct the subhom hyperdoctrine.

Hyperdoctrines were introduced by Lawvere as a categorical

approach to first-order logic. There are a few variants, but for us:

Definition 2.1. A hyperdoctrine is a functor from some base cate-

gory to the category of Heyting algebras, such that the image of

any morphism is both a left and right adjoint.

Our semantical hyperdoctrine is so simple that we can introduce

it here, based on a well-known example hyperdoctrine and two

easy results.
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Example 2.2. The well-known example hyperdoctrine that we

need is the contravariant powerset functor:

P : Setop → Set

𝐴 ↦→ P(𝐴)
(𝑓 : 𝐴 → 𝐵) ↦→ (𝑓 −1 : P(𝐵) → P(𝐴)) .

The hyperdoctrine structure will be detailed below.

The basic results we need are as follows.

Lemma 2.3. Hyperdoctrines are closed under precomposition by
arbitrary functors.

Lemma 2.4. Hyperdoctrines are closed under products.

Proof. □

The former lemma is nearly trivial; the latter is only slightly

more involved.

Our definition now goes in two steps. We first define a hyper-

doctrine P𝑋 for each object of a given category.

Definition 2.5. For any objet 𝑋 in a locally small category C, let
P𝑋 denote the composite

C
y𝑋 op

−−−−→ Setop
P−−→ Set,

where y𝑋 (𝐶) = C(𝐶,𝑋 ) denotes the hom-functor at 𝑋 .

Remark 2.6. We here view (−)op as a covariant endofunctor on
CAT, the very large category of locally small categories, which in

particular maps any functor 𝐹 : C → D to the functor 𝐹 op : Cop →
Dop

defined exactly as 𝐹 , though with different types.

Each P𝑋 is a hyperdoctrine by example 2.2 and lemma 2.3.

Wemay nowdefine our semantical hyperdoctrine using lemma 2.4.

Definition 2.7. For any locally small category C, the subhom
hyperdoctrine is

PC =
∏
𝑋 ∈C

P𝑋 .

Remark 2.8. Strictly speaking, this is a hyperdoctrine on Cop
.

Let us conclude this section by briefly unfolding some of the hy-

perdoctrine structure, without proof as this is all easy computation.

Proposition 2.9. Conjunction, disjunction, and negation in each
PC (𝐴) are given by pointwise intersection, union, and complementa-
tion, respectively.

Furthermore, each PC (𝐴) in fact has infinite conjunctions and
disjunctions, given pointwise.

Proposition 2.10. For any morphism 𝑓 : 𝐴 → 𝐵, 𝜑 ∈ P𝑋 (𝐴),
and𝜓 ∈ P𝑋 (𝐵),
• the reindexing 𝑓 ∗ (𝜑) is C(𝑓 , 𝑋 )−1 (𝜑), i.e., the set of morphisms

𝑑 : 𝐵 → 𝑋 such that 𝑑 ◦ 𝑓 is in 𝜑 ;
1
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• ∀𝑓𝜓 is the set of morphisms 𝑐 : 𝐴 → 𝑋 whose extensions 𝑔 along
𝑓 , as in

𝐴 𝐵

𝑋 ,

𝑓

𝑔𝑐

(1)

are all in P𝑋 (𝐵); and
• ∃𝑓𝜓 is the set of morphisms 𝑐 : 𝐴 → 𝑋 which admit some exten-

sion 𝑔 along 𝑓 , as in (1), such that 𝑔 ∈ P𝑋 (𝐵).

By construction, we have:

Proposition 2.11. The hyperdoctrine PC is classical, i.e., each
fibrePC (𝐴) is in fact a boolean algebra. Furthermore, for any 𝑓 : 𝐴 →
𝐵 and 𝜑 ∈ PC (𝐵), we have

¬∀𝑓 𝜑 = ∃𝑓 ¬𝜑
¬∃𝑓 𝜑 = ∀𝑓 ¬𝜑.

3 CONDITIONAL CALCULUS IN THE SUBHOM
HYPERDOCTRINE

In this section, we prove:

Theorem 3.1. Conditional calculus on any category C is the small-
est subhyperdoctrine of PC containing the true and false predicates.

This is not a very precise statement, so let us briefly recall the

basics of conditional calculus, and then give a more concrete state-

ment (theorem 3.10).

Definition 3.2. Conditions are defined inductively by the follow-

ing inference rule,

. . . 𝑓𝑖 : 𝐴 → 𝐵𝑖 𝐵𝑖 ⊢ 𝜑𝑖 . . . (𝑖 ∈ 𝐼 )
𝐴 ⊢ 𝜀𝑖∈𝐼 (𝑓𝑖 , 𝜑𝑖 )

where

• 𝐴 and 𝐵𝑖 range over objects of C,
• 𝑓𝑖 ranges over morphisms,

• 𝐼 denotes any set, and

• 𝜀 ranges over quantifiers, i.e., elements of {∀, ∃}.
We let CondC (𝐴) denote the set of conditions 𝜑 over 𝐴, i.e., such

that 𝐴 ⊢ 𝜑 .

Notation 3.3. We often omit the base objects of conditions, writ-

ing 𝜑 instead of 𝐴 ⊢ 𝜑 , when it is clear from context.

From this definition, it is not at all clear that a condition 𝐴 ⊢ 𝜑
should denote a subset of

∏
𝑋 C(𝐴,𝑋 ), as claimed by the theorem.

Indeed, this is only visible in the satisfaction predicate 𝑐 ⊨ 𝜑 , which
relates a condition 𝐴 ⊢ 𝜑 to morphisms from 𝐴:

Definition 3.4. Satisfaction 𝑐 ⊨ 𝜑 is defined by induction on 𝜑 , as

follows:

• if 𝜑 = ∀𝑖∈𝐼 (𝑓𝑖 , 𝜑𝑖 ), 𝑐 ⊨ 𝜑 means that, for all 𝑖 ∈ 𝐼 and 𝑔 making

the following triangle commute

𝐴

𝑋

𝐵𝑖

𝑐

𝑓𝑖

𝑔

(2)

we have 𝑔 ⊨ 𝜑𝑖 ;

• if 𝜑 = ∃𝑖∈𝐼 (𝑓𝑖 , 𝜑𝑖 ), 𝑐 ⊨ 𝜑 means that there exists 𝑖 ∈ 𝐼 and 𝑔

making (2) commute, such that 𝑔 ⊨ 𝜑𝑖 .

Satisfaction may thus be viewed as associating a “semantics” to

each condition 𝐴 ⊢ 𝜑 in PC:

Definition 3.5. We define

J−K𝐴 : CondC (𝐴) → PC (𝐴) =
∏
𝑋

P(C(𝐶,𝑋 ))

by J𝜑K𝐴 (𝑋 ) = {𝑐 : 𝐴 → 𝑋 | 𝑐 ⊨ 𝜑}.

Our main result will state that these assignments assemble into

a “universal” hyperdoctrine morphism CondC → PC. In order to

state it, we must first present the hyperdoctrine structure onCondC,
which is given by the operations given on conditions by Bruggink

et al.

The base case for the induction that defines conditions is of

course when 𝐼 = ∅. This gives the interpretation of true and false:

Notation 3.6. We let ⊤𝐴 := (𝐴 ⊢ ∀𝑖∈∅∅) and ⊥𝐴 := (𝐴 ⊢ ∃𝑖∈∅∅),
for any object 𝐴.

Conjunction and disjunction are straightforward:

Definition 3.7. For any conditions 𝐴 ⊢ 𝜑1, 𝜑2, let
𝜑1 ∧ 𝜑2 := ∀𝑖∈{1,2} (id𝐴, 𝜑𝑖 )
𝜑1 ∨ 𝜑2 := ∃𝑖∈{1,2} (id𝐴, 𝜑𝑖 )

Negation is defined by induction:

Definition 3.8. We define ¬ :

∏
𝐴 CondC (𝐴) → CondC (𝐴) by

induction, as follows:

¬(∀𝑖 (𝑓𝑖 , 𝜑𝑖 )) := ∃𝑖 (𝑓𝑖 ,¬𝜑𝑖 )
¬(∃𝑖 (𝑓𝑖 , 𝜑𝑖 )) := ∀𝑖 (𝑓𝑖 ,¬𝜑𝑖 )

It remains to extend the assignment 𝐴 ↦→ CondC (𝐴) to mor-

phisms, and prove that the obtained maps have left and right ad-

joints. This is, in fact, the trickiest part. Assuming for now that

conditions, or, rather, conditions, up to satisfaction equivalence,

assemble into a hyperdoctrine, uniqueness of adjoints tells us that

it suffices to give one of the adjoint functors to get all three. E.g., if

we give the right adjoint ∀𝑓 , then the whole chain ∃𝑓 ⊣ 𝑓 ∗ ⊣ ∀𝑓
follows. It turns out that both ∃𝑓 and ∀𝑓 are much easier to define

than 𝑓 ∗:

Definition 3.9. For all 𝜀 ∈ {∀, ∃}, 𝑓 : 𝐴 → 𝐵, and 𝐵 ⊢ 𝜑 , let
𝜀𝑓 .𝜑 := 𝜀★∈1 (𝑓 , 𝜑) .

The definition is so tautological that it might be hard to parse:

𝜀𝑓 .𝜑 is the condition consisting of the same quantifier 𝜀, applied to

the singleton family (𝑓 , 𝜑).
The catch is that conditions (modulo satisfaction equivalence)

may not form a hyperdoctrine, because reindexing, although de-

finable semantically, may not be expressible in the rigid syntax of

conditions.

A first, cheap result that we can readily prove is:

Theorem 3.10. Let C be any locally small category. The maps
J−K𝐴 commute with fibrewise logical operations ¬, ∧, ∨, and with all
∃𝑓 and ∀𝑓 .
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We first prove:

Lemma 3.11. For all 𝐼 and family of (𝑓𝑖 , 𝜑𝑖 ), we have

J∀𝑖∈𝐼 (𝑓𝑖 , 𝜑𝑖 )K𝐴 =
∧
𝑖∈𝐼

∀𝑓𝑖 J(𝑖𝑑, 𝜑𝑖 )K𝐴

J∃𝑖∈𝐼 (𝑓𝑖 , 𝜑𝑖 )K𝐴 =
∨
𝑖∈𝐼

∃𝑓𝑖 J(𝑖𝑑, 𝜑𝑖 )K𝐴 .

Proof. By a straightforward induction and propositions 2.9

to 2.10. □

Proof of theorem 3.10. Conjuction and disjunction work sim-

ilarly, so let us only treat, say, disjunction. The semantics of 𝜑 ∨𝜓

is by definition of J−K𝐴 the set of morphisms 𝑐 : 𝐴 → 𝑋 to some

𝑋 which satisfy either 𝜑 or𝜓 , which is precisely J𝜑K𝐴 ∨ J𝜓K𝐴 , as
computed in PC (𝐴).

The statement about ∀𝑓 and ∃𝑓 follows directly from lemma 3.11.

For the same reason, the constants ⊤𝐴 and ⊥𝐴 are mapped to

the constantly full and empty families, respectively.

For negation, we need to proceed by induction. The base case

is given by ⊤𝐴 and ⊥𝐴 . For the induction step, consider, e.g., any

𝜑 = ∀𝑖 (𝑓𝑖 , 𝜑𝑖 ). We have:

J¬𝜑K𝐴 = J∃𝑖 (𝑓𝑖 ,¬𝜑𝑖 )K𝐴
=
∨
𝑖

∃𝑓𝑖 J¬𝜑𝑖K𝐴 (by lemma 3.11)

=
∨
𝑖

∃𝑓𝑖¬J𝜑𝑖K𝐴 (by induction hypothesis)

= ¬
∧
𝑖

∀𝑓𝑖 J𝜑𝑖K𝐴 (by proposition 2.11)

= ¬J∀𝑖 (𝑓𝑖 , 𝜑𝑖 )K𝐴 (by lemma 3.11 again)

= ¬J𝜑K𝐴 . □

Corollary 3.12. If conditions form a hyperdoctrine, with entail-
ment given by inclusion of the satisfaction predicates, then the maps
J−K𝐴 assemble into a hyperdoctrine morphism, which is furthermore
unique.

At this point, we have proved that the semantics of most opera-

tions on conditions is given by the hyperdoctrine structure on PC.
There is one operation that we have not treated, though, which

Bruggink et al. call the shift.

4 ON THE BECK-CHEVALLEY CONDITION
5 ON FROBENIUS RECIPROCITY
6 CONCLUSION AND PERSPECTIVES
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