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Introduction

In this paper we continue the programme (initiated by Bénabou [2] and Lawvere
[12]) of developing the theory of bicategories as a calculus of modules. Here we in-
vestigate some basic examples: sets and relations, additive relations, ordered sets
and ideals.

These examples share with bicategories of the form #-mod (?-categories and
?-profunctors, 7" a cocomplete symmetric monoidal category) the structure of a
tensor product

[Bx[B—®—>[B

which is a homomorphism of bicategories, and which is coherently associative,
symmetric and with identity I. If ¥ is Cartesian, then every object X in B comes
equipped with diagonal

Ay: X XQX
and terminal
tX:X_)I

arrows which satisfy some basic laws. This leads to the first main notion of the
paper, ‘Cartesian bicategory’. A locally posetal bicategory is Cartesian if it has a
symmetric tensor product, every object is a cocommutative comonoid object, every
arrow is a lax comonoid homomorphism and comultiplication and counit have
right adjoints. Alternatively, a locally posetal bicategory is Cartesian if the sub-
bicategory of arrows with right-adjoints has finite biproducts, each hom-category
has finite products and the obvious induced tensor product on arrows is functorial
(Theorem 1.6). We deal only with locally posetal bicategories even though there is
no doubt that the general notion of Cartesian bicategory may be developed to cover
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the examples of sets and spans, and categories and profunctors.

After describing the first consequences of our definition, we investigate the
second main notion of ‘discrete object’ in a Cartesian bicategory. Modulo a ‘func-
tional completeness’ axiom, bicategories of relations are characterized by Cartesian-
ness and discreteness of every object (Sections 2, 3), and these properties together
with small bicoproducts, effectiveness and generators characterize bicategories
of relations of a Grothendieck topos (Section 6). Bicategories of ordered objects
in an exact category can be characterized as follows: they are Cartesian, closed
under the Kleisli construction, and the subbicategory of discrete objects is func-
tionally complete and generates (in a suitable sense). That our notion of discrete
object is correct for recovering the surrounding notion of ‘set’ is further supported
by the following example. In the bicategory SL of sup-lattices considered in [10],
our notion of discrete object coincides with the notion of ‘discrete space’ given
there.

To finish, let us remark that our theory of relations differs from others in the
literature (for example [6, 8]) in that local limits and involution are not primitive.
As a gift for this more bicategorical setting, we have a theory flexible enough not
just to cover the examples of relations and ideals, but also to give a simple and self-
dual characterization of bicategories B of additive relations, as follows: B is Car-
tesian and cocartesian, every object is discrete and codiscrete, and reflexive and
coreflexive arrows have splittings (Section 5).

1. Cartesian bicategories

In the following, B denotes a locally posetal bicategory. We usually denote
objects of Bby X, Y, Z, ... and arrows by r, 5, ¢, ... . Being locally posetal, B is in fact
a 2-category.

Definition 1.1. A tensor product in B is a homomorphism of bicategories
®:BxB—B
equipped with an identity object I and natural isomorphisms
0: X2 XXI, P: XRY->YRX,
0 XRXYRZ)>(XRY)VZ
satisfying the classical coherence conditions (sufficient since B is locally posetal).
Definition 1.2. A Cartesian structure on a bicategory B consists of

(i) a tensor product in B,
(i) on every object X in B, a comonoid structure. That is, arrows

Ay: X>X®X, Iy:X—L
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These data are required to satisfy the following axioms:
(A) The arrows Ay, ty satisfy the equations for X to be a cocommutative

comonoid object;
(U) Each arrow r: X—Y is a lax comonoid homomorphism. That is,

Ay'rg(r®r)'AX and tyrth;

(M) Comultiplication 4y and counit ¢y have right adjoints 4%, ¢¥. The only
cocommutative comonoid structure on X, with structure arrows having right ad-
joints, is (X, Ay, tx).

In fact we will prove in Theorem 1.6 that a bicategory B admits at most one (up
to iso) Cartesian structure, so justifying the name Cartesian bicategory.

Remark 1.3. (i) The arrows
A X® X~ X, ty:I-X

which are right adjoints to 4y and ¢y respectively, as stipulated in axiom (M), pro-
vide each object X with a commutative monoid structure which also satisfies axiom
(U). Just observe that if f and g have right adjoints f* and g*, then f& g has a right
adjoint f*® g* and, for any arrow r, we have f-rCg iff r- g*C f*. In fact, B°?
(arrows reversed) has a Cartesian structure induced from B.

(i1) Further consequences of axiom (M) are:

Ay ®A4y Iy ®y®1y

A
=X®X XX, x XXX XX (forgetting associativities);

0 t
[=XRX—25,r.

1+t
XX —5I®I
Q A4 1 t
IS IQI=-—IRI, [—I=I—T1.

To see this, notice that using the coherence conditions the left-hand arrows yield
commutative comonoid structures on X&® X and 1.

(iii) The following is an (obvious generalization of a) result of Fox [7]. Consider
a bicategory B with a tensor product. Then the tensor product is the biproduct iff
every object has a cocommutative comonoid structure and every arrow is a comonoid
homomorphism. Fox shows that if B is a symmetric monoidal bicategory, then the
bicategory HA(B) of cocommutative comonoids in B (with comonoid homomor-
phisms) has biproducts, and the tensor product in B is the biproduct iff the forgetful
functor HA(B)— B is an isomorphism. The result extends to our notion of Cartesian
bicategory. Given a bicategory B with a symmetric tensor product, let HA(B) be the
bicategory of cocommutative comonoids in B and lax homomorphisms, and let
HAR(B) be the full subbicategory of HA(B) determined by the comonoids for
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which multiplication and counit have right adjoints. Then HAg (B) has a Cartesian
structure. Moreover, B has a Cartesian structure iff HAz(B)— B is an isomorphism.

(iv) A tensor product on B induces in an obvious way a tensor product on B
(2-cells reversed). We call a Cartesian structure on B a ‘cocartesian’ structure on
B.

Example 1.4. (i) B =Rel(€), the bicategory of relations in a regular category € with
a choice of products.

(i) B=O0rd(¢), the bicategory whose objects are ordered objects in a regular
category ¢ with a choice of products, and whose arrows are ideals.

(iii) B =the bicategory of inf-semilattices and (left-exact) functors.

(iv) B=Par(¢), the bicategory of partial maps in a left-exact category € with a
choice of products satisfying all the axioms of a Cartesian bicategory except for the
requirement for ¢, to have a right adjoint. A stronger property than axiom (U) is
satisfied in this case: every arrow is a strict comultiplication homomorphism.

Definition 1.5. An arrow r: X — Y in a bicategory B is called a map if it has a right
adjoint r*. Denote by Map(B) the subbicategory of B determined by these maps.
Observe that a tensor product on B induces a tensor product on Map(B).

Theorem 1.6. Let B be a locally posetal bicategory. If B has a Cartesian structure,
then
(1) Map(B) has finite biproducts,
(i1) B locally has finite products and the identity arrow of I is the local terminal
in B(I, ),
(iii) Biproducts and the biterminal object in Map(B) may be chosen so that the
Jfollowing formulas hold in B:

r&s=(p*-r-p)N(p*-s-p) (p’s denote the appropriate projections).

Conversely, if B satisfies properties (i) and (ii) and the formulas of (iii) define a
(functorial!) tensor product on B, then B has a Cartesian structure.

Proof. Suppose B has a Cartesian structure. To prove (i), by Remark 1.3(iii), we
need just to show that every map is a comonoid homomorphism. From Remark
1.3(1), every arrow is also a monoid homomorphism. So, if f is a map, then
fXA*cA* (f*®f*) and f*-t*Ct*. The opposite inclusion must hold for left
adjoints and therefore, by axiom (U), 4-f=(f®f)-4 and ¢- f=t.

To prove (ii), first notice that 4*- (r®s)- 4 Cr, since

A% (r®s)-ACcA*- (r@t*-1)- A=4%-(1t*%) - (r®1)-(1®1)- -4
=0-(r®1)-o '=r,
(using the naturality of ©). Now, it is straightforward to show that the formula

rs=4*-(r®s)-4
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defines the local intersection. The local terminal is, of course, given by the formula

%
m)(’y——ty'tX.

To prove (iii), it is just necessary to compute (p*-r- p)N\(p*-r-p) as rQs.

Conversely, suppose B satisfies (i) and (ii) and we define a tensor on B by the
formulae in (iii). It is straightforward that the conditions (A) and (M) for B to be
Cartesian are satisfied. It remains to prove condition (U). Observe that composing
on the left with a map, or on the right with the right adjoint of a map, preserves
local intersections and local terminals. Using this fact and the definition of the
tensor product it can be shown that 4*- (r®r)- 4=r and condition (U) for 4
follows from the adjunction 4 -4 4*. Finally, condition (U) for ¢ follows from the
fact that ¢y is the local terminal my ;. []

Corollary 1.7. Let F:B—D be a homomorphi_sm, where B,D are Cartesian
bicategories. Then the following are equivalent:

(1) F is a strict monoidal functor;

(i) F restricts to a strict monoidal functor Map(B) —Map(D).

Proof. That (i) implies (ii) is obvious. If (ii) holds, then F preserves I, hence the
terminal maps, and thus projections and diagonals. Thus F preserves local intersec-
tions and, by the previous theorem, the tensor product on arrows. [

2. Bicategories of relations

Definition 2.1. (i) An object X in a Cartesian bicategory is discrete when the
multiplication 4% and the comultiplication 4y satisfy

D) 4-4*=(4*@1)- (1R 4).

(We are forgetting the associativity in the middle.)
(if) A Cartesian bicategory is called a ‘bicategory of relations’ if every object is
discrete.

Remark 2.2. If X, Y are discrete, then X® Y is also; I is always discrete. So, if B
is a Cartesian bicategory, then the full subbicategory determined by the discrete
objects is always a ‘bicategory of relations’.

Example 2.3. (i) The bicategory of relations of a regular category & is, of course,
a ‘bicategory of relations’. To avoid confusion between these examples and the
abstract notion we will always use quotation marks for the latter.

(if) If Bis Ord(¢'), then an object is discrete iff it is an equivalence relation. (See
Section 6 on ordered objects.)
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Theorem 2.4. A ‘bicategory of relations’ admits transfer of variables; that is, it is
compact closed [11]. In particular, the involution ( )° is the identity on objects, and
satisfies the following laws:

rD-Ac(A®r°)-4-r and A*- (rQ@1Cr-A*(1&®r°).

Proof. Define 75 and ¢y as follows:
tx 4%

X Ay
M=l —— X5 X®X, ey=X@X—oX—oI.

We need to prove that X - X; that is,

XSIRX— ! X®X®X—®—>X®l—>X 1y
and
® e®1
X X®R1— X®X®X~———>I®X—>X 1y.

The first composition can be computed as
A*- (1@t tx)-(1Q4%)- Ax®1) - (t- tx®1)- A=
=A% (1@my x)- Ax- A% (my x@1)-A4=1-1=1.

As for the second composition, observe that it can be deduced from the first by
means of the symmetry isomorphism y. So, B is compact closed and, as in [11], we
can deduce that there is a natural isomorphism of ordered sets (transfer of variables)

XQY-7Z
— (%)
X—ZRY
1®n re®l
given by F=XSXQRI—XR YR Y——-*Z@ Y. The inverse is defined in a

similar way by means of &. The naturality of the correspondence (*) in X and Z
means

1
7L xay-z
() o ,
X —DX—ZRY
r S
- XRY—>Z->27
~ 1 .
Lzl 70y

,
Moreover, by defining the opposite of an arrow X— Y as

1 1
Y——*X YSYRI— Lon Y®X®X—®@—>Y®Y®X-a—®——>l®X3Y,

one can prove that ( )° becomes an involution on B. That is, we have the properties

1°=1, (r-s)°=s°-r° (r°)°=r and rcCs implies r°cs®.
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Further, we have the naturality in Y of the correspondence (*),
1
XV 2L x0 Y-z

: —
Xz 7r-2 707

(Y)

Finally, to prove the stated laws, let us compute A*- (r®r) and (r- 4%) :
A* (r@r) =A*- 1) - Q) =U*- A®r) -r=(1®r°)-4¥ .r

and
(r-4% =r®1)- 4%,

Since r- A*C A*- (r®r), to prove the first law it suffices to show that 4% =A. But

4*®1

~ _ 1
A =X 3XQI—2 X QXX X®@X=4-4* (1Qmy ) A=4.

In a similar way we can prove the second of the two laws. [

Observe that axiom (U) does not play any role in the proof that B is compact
closed. Axiom (U) is needed only to prove the two stated laws.

A consequence of the discreteness axiom is that the order between maps is
discrete; that is, Map(B) is a category.

,
Lemma 2.5. In a ‘bicategory of relations’ an arrow X—Y is a map iff it is a
comonoid homomorphism iff r—r°.

Proof. We have already proved that a map is a comonoid homomorphism (Theorem
1.6). We need just to prove that if an arrow r is a comonoid homomorphism, then
r° is right adjoint to r. By using the definition of # and ¢, we can compute the com-
positions

N @1 A®1 i I
rro=yY3IY 2 xo v 22 xo xo v —278L,
1®A4* 1®t _ r
XQY®Y XQY XRISX—Y
_ t*X 1 ARX1 1
—YSIR T2 x@ Y2 xe xe v 221,
1®4* 1®¢ ~
YQYRY YRY—2 s YRISY
_ t*®1 1 AR 1
_ysir 2L xor—8  yo y—2%L,
1®Aa* 1®¢ —
YQYRY YQY YQISY
_ *®1 aA* A 1 —
cYSIOY—2 yeor-2y L year—2 . y®ISY

=1-1=1,
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t*® 1 1 1
rer= X310 v —2  xo 722 yo x@ y—2 8L,
1®4* 1X¢ —
x0reyY—2 xov—2 . x®I5X
r*®1 AX®1 1
_x310Xx—2  xox—22  xoxox -9,
1®A4* 1&®r1 -
Yy —-22 xor—2 . x0I5X
—_ r*®1 A®1 1®4*
SXSIRX XX XQXRX
1 18t —~
xox—2  xorv—2' . x@I5X
— t*® 1 A*
x5 10 Xx—2  xox—22 . x o x 0 Xx—2
17 —
XQX XQ15X
_ *®1 A* A 1&¢ _
YXSIRX XQX——X——XRX XQISX
=1-1=1. O

Observe that in the proof of r°-r 21 the discreteness axiom is not used and that
the role of the hypothesis that r is a comonoid homomorphism can be split in two:
that 7 is a comultiplication homomorphism is used in the proof of r-r°cCl (risa
‘partial map’); that r is a counit homomorphism is used in the proof of r°-r21
(r is ‘entire’ or ‘everwhere defined’).

Corollary 2.6. In a ‘bicategory of relations’:
(i) if f is a map, then f*=f°: in particular A*=A4° and t*=

(ii) if f,g are maps and fCg, then f=g;

(i) r is a partial map iff r is a comultiplication homomorphism; composing on
the right with a partial map r or on the left with r° preserves local intersections;

(iv) r is entire iff it is a counit homomorphism; composing on the right with an
entire morphism r or on the left with r° preserves local terminals; if a composite
s r is entire, then r is entire.

Proof. (i) Follows from uniqueness of the adjoints and the previous lemma.

(i) Obvious since adjoints are opposites.

(ii) If r is a comultiplication homomorphism, then by Lemma 2.5 it follows that
r-r° C1, that is, that r is a partial map; conversely, if r-7° C 1, then by the law of
Theorem 2.4 we have

A-r2@-r°®@)-4-r=(r®1)- r°®1HN-4-r2r®1)-1XRr-4
=(r®r)- 4.



Cartesian bicategories 1 19

The preservation property is now immediate from the definition of local inter-
sections.

(iv) It has already been observed that if r is a counit homomorphism, then
r is entire. Conversely, suppose r is entire. Then because ¢ is a local maxi-
mum ¢-r2t-r°-r2t. So m-r=t°-t-r=t°-t=m. Finally, if ¢-s-r=¢, then
t-rot-s-r=t. O

In the presence of discreteness we can also improve Corollary 1.7 as follows:

Corollary 2.7. Let F-B—D be a homomorphism of bicategories between ‘bi-
categories of relations’. Then the following are equivalent:
(i) F is a strict monoidal homomorphism;
(ii) F restricts to a strict monoidal functor Map(B)— Map(B);
(iii) F preserves local intersections and 1. []

The main point which we have not so far covered is that (iii) implies (i). This
reduces easily to showing, under assumption (iii), that projections are preserved (up
to isos) which follows from

Lemma 2.8. In a bicategory of relations let pxy: XQ@ Y—=>X and py: XQ Y Y be
the projections. Then

(i) py - px=mxy, Px PxN\Py - Py=1

(ii) if f,g are maps such that g-f°=myx yand f°-fNg°-g=1, then the map
(f,8Y=(f®g)- A4 is an isomorphism, and hence f=py and g=py.

Proof. Properties (i) are easily proved for any Cartesian bicategory. To prove
(i) first observe that the condition g°-gNf°-f=1 means exactly that
(f,8>°-{f,g=1. Then
t-{fig°=t-4°-(f°®g°)=t-2-4°-(1Kg°)-(f°R®1)
2t-4°-(g®D-(f°R®D=t-4°-(g- f°®1)
=t-A°-(MRQD)=t-A°@°-tQ@DN=t-4°-(t°QRD-(t®1)
DA4°-(1XH-t®1)=4°-tR1)=1t.
Thus { f,g)° is entire ({(f,g)-{f,&>°=1). So {f, g) is an isomorphism. []

Remarks 2.9. (i) Every strict monoidal homomorphism F between Cartesian bi-
categories preserves discrete objects as well as 7 and ¢. Therefore F preserves also
the involution when restricted to the full subbicategory determined by the discrete
objects.

(i) Every bicategory of relations satisfies Freyd’s modular law [8]: s-rN#C
(t-r°Ns)- r. To see this notice that
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s-rNt=4°-(5-r®XNA=4°-(sQ1)- (r@x1l)- 4
CA°-(sQ1)-(1Qr°)-A-r=4°-(s®t-r°)-4-r
=(sNt-r°)-r.

(iii) Given a multisorted theory T formulated in the (&, A, ¢, =)-fragment of logic,
we can construct out of T a ‘bicategory of relations’ B(T) as follows. Objects a are
finite words @ = (¢4, ..., ,) of basic sorts; arrows r: @ — f are (equivalence classes
of) formulae r(x, y) having free variables of sorts (e, 8); 2-cells are entailments.
Composition is given by s- r(x, z) = y(r(x, y)As(y, z)) and the tensor product by the
conjunction. The comultiplication 4 is the formula

A, X, x") =((x=x)N(x=x")),

and the discreteness axiom expresses the symmetry of equality. The converse can
also be proved: given a (small and locally small) ‘bicategory of relations’ B, there
exists a theory T such that B(T) is equivalent to B. From this point of view, we can
think of a small and locally small Cartesian bicategory B as a theory in which equali-
ty is not assumed symmetric.

(iv) Let SL be the bicategory of sup-lattices considered in [10]. Then SL has a ten-
sor product. Let Mon(SL) be the bicategory of commutative monoids in SL with
morphisms f: X — Y being the sup-lattice ones such that f(x-y)=<f(x)-f(») and
J(1)=<1. Let B be the full subbicategory of Mon(SL) determined by the monoids
such that the multiplication and unit have left adjoints. Then, by Remark 1.3(i), B
is Cartesian. Observe that Mon(SL)° is the bicategory of cocomplete, symmetric
monoidal categories and cocontinuous monoidal functors between them. A reason
to choose such morphisms in Mon(SL), besides the formal fact that with these mor-
phisms it is Cartesian, is that if PX, PY are sup-lattices of ‘parts’, then a relation
r: X—Y is the same as a cocontinuous functor f: PY— PX, and the conditions
Sfx- )< f(x) f(»), f(1)<1 are satisfied by any functor since PX, PY are left exact.

The subbicategory By;,. of the bicategory B determined by the discrete objects is
a ‘bicategory of relations’ (see Remark 2.2). We will show now that Map(Bg;.)
coincides with the category of discrete spaces defined in [10]. The objects of
Map(Bg;,.) are clearly locales in which the external maps X A, X®X and X1
are cocontinuous. We need to show that our discreteness axiom is equivalent to the
openness of the pair 4 -4 A%*, that is, 4. A4*- (4*®1)24*- (1R 4). But

A4-A4%=4-4* (1Q4%)-(1®4)=4-4* (4*®1)- 1 ®4)
=4* (1@AH1R®4)=4*(1®1®4) - (1K4)
=4* (118 4)- 4))

=(d*®4%)-(10y®1)-(1®(1®4)- 4))
=A*®4%)- (1) - (10 (U R®1)-4))

=A*@AMNI®r®1)- (1X40 D1 A4)
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=(4*Q@4MH(1 X4 D1 R 4)=(4*R4%)(1® (4 ® 1)4))
=U*®4%)- 191 RA)A)=(A*R4%)- (1®¥1KR4)(1A® 4)
=4*®@4*-4)- 1Q@4)=U*Q® 11X 4). '

In the other direction, if the discreteness axiom holds, then from the laws of
Theorem 2.4 we have: A*(1&®4)Cc4-4*A4°®1), and because 4*=A4° (Corollary
2.6) wehave A4*- (1Q®A4)cA-A*- (4* 1). Thus, since every arrow is a lax monoid
homomorphism and since 4 4 4%, we get the opposite inclusion also.

From Corollary 2.5 we have that an arrow f is a map iff the adjoint f° is a
monoid homomorphism, so that Map(B;,.) 1s the same as the category of discrete
spaces.

3. The characterization theorem

We now give a proof of the characterization theorem for bicategories of relations
of regular categories. The proof here is slightly different from the one given by
Freyd [8]. One difference is that by the systematic use of our calculus of (&), 7, 4, 1)
we have been able to avoid the use of argument by contradiction.

Definition 3.1. A ‘bicategory of relations’ is functionally complete if for every
arrow r: X — 1 there exists a map i: X,— X such that i°-i=1 and 7-i°=r. The
map i is called a tabulation of r [8].

Remark 3.2. The ‘bicategory.of relations’ B(T) associated to a theory T (see Remark
2.9(ii)) is, in general, not functionally complete. To say that B(T) is functionally
complete is to say that for each formula r(x) of sort a there exists a definable func-
tion symbol /,: a,— a such that r(x) is equivalent to Ix’(i(x’) =x) and such that
i(x)=i(x") =x=x". Given T we can of course add function symbols to have an ex-
tension T’ of T (having the same models as T) such that T is functionally complete.
We will see later on (Section 4) how to construct B(T’) out of B(T) in a purely
algebraic way.

Lemma 3.3. Let i be a tabulation of r: X — 1. Then

(i) for each map f:Z — X such that t- f° Cr there exists a unique map h:Z - X,
such that f=i-h;

(i) if t-f°=r, then t- h° =t; that is, h° is entire.

Proof. (i) Define 4 as h=i° - f. Then A is a partial map, being the composite of par-
tial maps. Further - A=¢-i°-f=r-f2t-f°-fDt, and thus t- A=t and A is entire.
Therefore, 4 is a map and i-2=i-i°-fCf. Hence from Corollary 2.6, i- h=/.
Uniqueness follows from the fact that i°-i=1. :
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(i) ¢t-h°=t-f°-i=r-i=t; thatis, h° is entire. Observe that since # is a map h°
entire means that 4- h°=1. [

Corollary 3.4. Every arrow r: X — Y has a tabulation, that is, a jointly monic pair
of maps f,g such that

) g-f°=r;

(ii) if x, y is another pair of maps such that y-x° Cr, then there exists a unique
map h such that f- h=Xx and g- h=Yy and such that, if y- x°=r, then h° is entire.

Proof. (i) Consider the transpose 7: XQ Y —=I=¢- (r&® 1) of r arising from the com-
pact closedness. Let i=(f, g) be a tabulation of 7. Then f, g are jointly monic. To
prove that g- f° =r, let us compute the arrow corresponding to ¢- i ° =7 by the com-
pact closedness:

| F& 1 _
O YR YR Y — s IQ YS Y=

1 [+ o
=X:’X®I—‘—@L‘>X® Y@ Y._Z&g_,

®1

X=5X®1

Z®Y®Y ZRY

1 °®1
—X~J:—*Z—>Z®I 17 Z®Y®YM—>

e®1

IRY>Y

ZRZRY IRYSY

xL Lz C vy x Ly

Thus g- f°=r.

(i) We need just to prove that the condition y- x° C r is equivalent to - {x, y)° C F
and then apply Lemma 3.3. This follows by a calculation similar to the above using
compact closedness. [

Theorem 3.5. Let B be a functionally complete bicategory of relations. Then

(i) € =Map(B) is a regular category — that is, a left exact category in which ex-
tremal epis are stable under pullback and every arrow factors as an extremal epi
Jollowed by a mono;

(ii) the function assigning to each relation {f,g) of € the arrow g-f° of B ex-
tends to a biequivalence of bicategories.

Proof (i) From Corollary 3.4, a pullback of r,s in & =Map(B) is a tabulation of
- r; 80 € is left exact, and monos i in € are charactenzed by the equation i®-i=1.
Now letf: X— Ybeanarrowin & and consider Y—f—+ X-L,I. Lemma3.3 provides a
factorization of f as f=i- h, with i mono and 4° entire. From this it follows that a
map 4 is extremal epi iff 4° is entire; that is, iff h- h° =1. Finally, if /- h’'=h. f"is
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a pullback in € and f is an extremal epi, then ¢- f'°2¢-h'- f'°=t-f°-h=t-h=1t.
Hence f’° is entire and f’ is extremal epi. Thus & is a regular category.

(ii) Since the assignment is the identity on objects and locally an isomorphism we
need only prove the functoriality. But this is an instance of Corollary 3.4(ii). [l

Since monoidal homomorphisms between ‘bicategories of relations’ preserve
tabulations, we have

Corollary 3.6. Suppose B and D are functionally complete ‘bicategories of rela-
tions’. Then the category of monoidal homomorphisms B— B is equivalent to the
category of left exact extremal-epi preserving functors Map(B)—Map(D). U

Remark 3.7. Using the above characterization theorem it is easy to characterize
bicategories of relations of other important classes of categories. For example,
bicategories of relations of Heyting categories (those regular categories such that for
each X N Y the inverse image functor f*: Sub(Y') — Sub(X) has a right adjoint V)
can be characterized as the functionally complete bicategories of relations having
all right Kan extensions (and thus all right liftings, from compact closedness).
Again, bicategories of relations of geometric (coherent) categories (those regular
categories having pullback-stable (finite) unions of subobjects) can be characterized
as those functionally complete ‘bicategories of relations’ which are locally (finitely)
cocomplete, with local unions preserved by composition (distributive ‘bicategories
of relations’). Finally, bicategories of relations of elementary toposes can be
characterized as those functionally complete ‘bicategories of relations’ such that
B(X, —) is representable in Map(B). A good set of operations and equations to ex-
press this representability has been found by Freyd.

We will investigate bicategories of relations of Grothendieck toposes in the last
section.

4. Ordered objects and ideals

In this section we characterize the bicategory of ordered objects and ideals of an
exact category €. An ordered object in € is a relation p: X — X such that 1 C p and
p-pCp; that is, it is just a monad in B=Rel(¢). An equivalence relation in & is
a symmetric monad in B; that is, a monad such that p=p°. Comonads in B are also
important; we show now, following [8], that the bicategory of symmetric comonads
provides the free functional completion of a ‘bicategory of relations’. We begin with

Lemma 4.1. In a ‘bicategory of relations’.
(1) the class of symmetric comonads coincides with the class of ‘coreflexives’ (ar-
rows a such that aCl);
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(ii) if a and b are two reflexives on X, then b-a=aNb.

Proof.
a=1Na=4°-(1®a)- 4C4°-(a°®1)-4-aCclNa®°=a°.
If bC1, then b-aCanNb. But
aNb=A4°- (@@ b)4=4°-(1Qb)- (a® 1)4
cA°(1®b)(1®a°)da=(1Nb-a°)-aCb-a. []

As in any bicategory, a Kleisli object for a monad p is an object X, and an ar-
row X — X, which represent the functor p-Alg(X, —). The representability implies
that the arrow e: X— X, has a right adjoint e* such that e*-e=p and (in the
locally posetal case) e- e*=1. These two equations characterize the Kleisli construc-
tion for p as a splitting of the idempotent p. Dually for a comonad a, the splitting
i*-i=1and i- i*=a of a as an idempotent characterizes the Kleisli construction of
the comonad a. If B is a ‘bicategory of relations’, then the comonad a is symmetric
and the adjoint i* of the splitting i of the comonad a coincides with i°. Observe that

‘bicategories of relations’ can admit a Kleisli construction only for symmetric
monads and comonads.

Lemma 4.2. A bicategory of relations is functionally complete iff every symmetric
comonad has a Kleisli construction; that is, iff coreflexives split.

Proof. First observe that the function ‘domain’,

B(X, I)—@—>C0r(X)= {aeB(X, X)|aC1}

which associates to each r: X -1 its domain & (r)=1MNr°.r, is an isomorphism,
whose inverse is given by composition with ¢. For, if a is a coreflexive, then

D(t-a)=1Na°-t°-t-a21Nag°-a=a,
and :
D(A-a)=4°-1Qa°-t°-t-a)-A=4°-1Qa°)- 1Qt°-t-a)4

Ca®-4°-(@®1)-(1QRt°-t-a)4d=a°-A°-(a®t°-t-a)- 4
=q-(@aNt°-t-a)Ca.

Conversely, if r: X—1, then t- @(r)=t-(1Nr°-ryct-r°-rcr, because t;=1,.
Further,

t-ANnre-Nor-ANre-rN=r-4°-1Qr°-r4
=r-4°-1®r°)-(1Qr)- 4
24°-(r®1)-(1QXr)-4=4°-rQr)-A=r.
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Now, suppose B is functionally complete and let a be coreflexive. If / is a tabulation
oft-a—i°-i=1landt-i°=t-a —thent¢-i-i°=t-a, and hence, by the previous
remark, i-i°=a. Conversely, let r: X—1I be an arrow and suppose coreflexives
split. Leti- i° =D (r), i°-i=1beasplitting of D (r);thent-i°=¢t-i-i°=t- D(r)=r,
again by the previous remark. Thus i tabulates r. [

A virtue of the notion of Cartesian bicategory is that it is stable under the splitting
of idempotents, whereas Freyd’s notion of allegory is only stable under the splitting
of symmetric idempotents. The usual construction of the splitting of idempotents
applied to Rel(€) simply as a category gives the bicategory of ordered objects in &
and ideals between them. The following lemma will be used in the theory of ordered
objects, as well as in discussing the free functional completion of a bicategory of
relations.

Lemma 4.3. Let B be a Cartesian bicategory and let & be the class of monads (com-
onads) in B. Then

(1) the splitting & of the monads (comonads) in & is a Cartesian bicategory
(assuming B to be a ‘bicategory of relations’ in the comonad case),

(ii) if B is a ‘bicategory of relations’ and 4 is the class of symmetric monads
(comonads) in B, then j is a ‘bicategory of relations’.

Proof. (i) Recall that # has as objects the monads (comonads) of B and as arrows
r:p—q the arrows r of B such that rp=r=q-r. It is easy to see that g is a
bicategory (the identity arrows are p:p— p). The tensor product in B induces one
in #. In the monad case define A4,:p~p&@p by 4,=(p®p)- A and the adjoint
Ay as p- A% t, simply as ¢ and the adjoint as #*. In the comonad case define 4, as
A-p and the adjoint A; as p-4°, t,as t-p and the adjoint ¢t*-p as p-t°. A
straightforward calculation shows & to be Cartesian.

(i) We need only to prove axiom (D). First observe that if pC i, then p is a partial
map, so that 4- p=(p&®p)- 4. Hence in each case 4, - A;’,‘=(p®p)-A - A4°-(p®p).
Now, in the comonad case, this last is (p@p4°)-(p®4- p), that is (1,4))-
(4,& 1,). In the monad case, first observe that from the basic law of Theorem 2.4,
we have (p®p)- 4=(1&®p)4,. Then

A, 45;=(1R@p)(1R®A4°)- (pR1)-(1Qp)- AR (p®1)
=(1®p)-(1X¥4°)- (p®1®P)-1X4)- (p&1)
=(pR(p-4°-(1Qp)- (p®1)-4-p) X p)

Remarks 4.4. (i) If B is a ‘bicategory of relations’, then taking # to be the class of

coreflexives Cor(B) of B the splitting Cor(B) is the free functional completion of
B: & =Map(Cor(B)") is a regular category, and there is a natural equivalence be-
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tween the category of monoidal homomorphisms B— Rel(S), S a regular category,
and the category of left exact image-preserving functors ¢ — S. In particular, if B
is the ‘bicategory of relations’ associated to a theory T, then € =Map(Cor([B)A) is
the logical category € (T) syntactically constructed in [13] or [9].

(ii) If B=Rel(¢), define Mon(B) (=O0rd(¢)) as the splitting of all monads in B.
Clearly all monads in Mon(B) have a splitting (that is a Kleisli construction) and
Mon(B) is the free completion of B with respect to the Kleisli construction. An easy
computation shows that a bicategory B has the Kleisli construction for monads in
B iff the canonical embedding B—Mon(B) is an equivalence. (For the details of a
more general result see [5].) Hence the construction Mon(—) is idempotent. By the
previous theorem Mon(B) is Cartesian, if B is. In fact more is true:

Lemma 4.5. If B is a ‘bicategory of relations’, then Mon(B) is compact closed, and
canonically ((—)°)°=1, (-)°®(-)°=(—® ~)° (actual equality!).

Proof. Define (X, p)° =(X, p°) and
N, py =1~ (X, P)° (X, p)=(p° ®p)At°=(p° @p) -1,
Ex,p=(XP)OX, p)° > I=t-4°(pRP°)=¢tx- (PR DP°).

A straightforward computation using the basic law of Theorem 2.4 shows that
X, p—Xp»°. U

If B is a ‘bicategory of relations’, define Eq(B) as the splitting of symmetric
monads in B. Then Eq(B) is again a ‘bicategory of relations’. If B=Rel(¢), then
Eq(B) is the bicategory of equivalence relations in € and compatible relations be-
tween them. Recalling that a regular category is exact if every equivalence relation
in € has a coequalizer e whose kernel is the given equivalence relation, it can easily
be seen that € is exact just when in B = Rel(€) every symmetric monad has a Kleisli
construction; that is, iff symmetric monads split in B. Following Freyd, we will call
such bicategories effective. From the above discussion the following characteriza-
tion theorem clearly emerges:

Theorem 4.6. A bicategory B is biequivalent to a bicategory Ord(¢) of ordered ob-
Jjects (and ideals between them) in an exact category & iff
(i) B is Cartesian;
(ii) every monad in B has a Kleisli construction;
(iii) for each object X in B there exists a discrete object X, and a monad X — X
whose Kleisli construction is isomorphic to X;
(iv) if aC 1y and X is discrete, then a splits.

Proof. If B is such a bicategory, then define B, as the bicategory of discrete ob-
jects. Then By is functionally complete. To see this we need to show that if aC 1y,
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X discrete, and if i*i=a, i- i*=1 is a splitting of a, then the domain X" of /: X' — X
is discrete. But

A Ab= Ay i* A% =(*Q %) Ay AR 1)
=((*@iMNARA¥)- (A®1D)-(Qi)=(*Ri*4%)- (4i® 1)
=((*Q@E*RA4*-i%)- (i) X4-1)
=(1@4*- (*®*®i*) (QWIi®I)NAR1)
=(1®4%- (*i®i*iQi*)- (AR 1)=(1RXA4*HA X D).

A similar argument shows that if p: X — X is an equivalence relation in By, then
the splitting X—X, of p stated in (i) still has discrete codomain. Thus
& =Map(B,) is an exact category, and conditions (ii), (iii) ensure that Ord(&) is
equivalent to B: Mon(B,) is a full subbicategory of Mon(B); from (ii) and Remark
4.4(ii), B is biequivalent to Mon(B); from (iii), the resulting homomorphism
Mon(B,)— B is a biequivalence. [l

Remark 4.7. If & is just a regular category, then Mon(Rel(¢)) can be constructed
and satisfies (i)-(iv) of Theorem 4.6. However, the discrete objects in Mon(Rel(¢))
can be shown to be equivalence relations in &, that is, the objects of the free exact
category over the regular category &. This explains why in the characterization
theorem we assume & exact.

S. Abelian bicategories

Additive relations — relations in abelian categories — have been studied by various
authors, but the only characterization known to the present authors is the early one
of Puppe [14] which predates the notion of exact category and is thus rather com-
plicated. The notion of ‘bicategory of relations’ leads to a simple and perfectly self-
dual characterization of such bicategories.

Definition 5.1. Let B be a bicategory with tensor product. B is an abelian bicategory
if both B and B (2-cells reversed) are ‘bicategories of relations’ with respect to
the (same) given tensor product.

An abelian bicategory is functionally complete if both B and B are functionally
complete as ‘bicategories of relations’.

We will denote by Oy:/— X and d5: X&® X — X the maps which provide the
Cartesian structure on B°.

Theorem 5.2. Bicategories of relations of abelian categories are characterized by the
property that they are functionally complete abelian bicategories.
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Proof. To prove that B=Rel(€), € an abelian category, is a functionally com-
plete abelian bicategory let us first observe that B being a bicategory of re-
lations means that each object in B is equipped with a cocommutative comonoid
structure such that the comultiplication and the counit are right adjoints and are
thus opposites of maps X® X — X and I— X. The opposite should be understood
as the involution arising from the compact closed structure on B. These maps
are a commutative monoid structure on X. The codiagonal and the fact that the
terminal is also initial provide such a structure on each object of B=Rel(¢). Con-
dition (U) (- (r®r)Cr- o) is easily checked. Discreteness of X in B (6°-d=
(1® ) (6°X®1)) follows from the fact that the square

01

XXX XQ®X

1®0 o

1
XXX > X

is a pullback in € (additivity).

For B to be functionally complete means that if r 21, then r splits. But this
follows from the well-known fact that in an abelian category &€ every reflexive rela-
tion is an equivalence relation [1]. Since € is exact, the coequalizer e of r gives a
splitting of r in B =Rel(&).

Conversely, if B is a functionally complete abelian bicategory, then & =Map(B)
is certainly a regular category and the structure on B provides the semiadditivity
(coproducts = products) of & by the dual of Theorem 1.6. The discreteness of B
just says that the arrows

o oy
fy=l—>X—">XRX,

) o)
Ex=XRX —o X —2]

give rise to a compact closed structure on B, by the dual of Theorem 2.4. Since the
two compact closed structures are naturally equivalent by standard arguments on ad-
junctions, there exists a unique isomorphism Vy: X — X such that 1® Vy)-fixy=
nx and &y - (1® Vy)=¢€x. The condition (1 ® Vy)- 7y =nx qualifies Vy as the map
X — X which gives the group structure on each object X, since it means that

t
X X > T
A OX
1®V
XRX X®RX X

is a pullback. Thus (X, d, Oy, Vy) is an abelian group object in Map(B) and
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V2=1. Thus ¢ =Map(B) is additive, and it is also exact by the functional com-
pleteness of B. By Tierney’s theorem that an exact additive category is abelian,
& is an abelian category. [

Remarks 5.3. (i) By the dual of Theorem 1.6, the Cartesian structure of B pro-
vides a local union on B defined as rUs=¢-(r&®s)-6°, for which the zero map
X 2—»1 =% Y is a minimal element. Moreover, the compact closed structure on B
induced from the structure on B° yields an involution which coincides with the one
given by the Cartesian structure on B. (Just use the very definition of the involution
and the fact that e-(1® V)=&(V®1), since t°- A1 QV)=t°- V- AV°®1)=
t°-A-(V®1), because V=1 implies ¥~ '=¥; but V"!=V. Similarly 1 ® V) =
(V® 1n.) So, by the dual of Theorem 2.4 the bicategory B satisfies the dual of
Freyd’s modular law (s- rUt 2 (sUz- r°)- r) as well as the duals of Lemma 2.5, Cor-
ollary 2.6, 2.7, .... In particular, it follows from the dual of the modular law that
the lattice of subobjects of each object of Map(B) is modular.

(ii) The most we can say about the interplay between composition and local unions
in an abelian bicategory is the dual of the modular law. It is always true that if f
is a map, then (rUs)- f°=r-f°Us- f° and f- (rUs)=frU fs. Logically this means
that 7 commutes with U. But it is not true that (rUs)- f=rfUsf or f°-(rUs)=
fe-ruUfe.s, as well as 0-f°=0; these conditions mean that substition preserves
finite unions. Any of these conditions would imply that B is degenerate (Adelman).

The category # of Hilbert spaces and continous linear maps is regular and ad-
ditive, so that B =Rel(¢€) is an abelian bicategory where just functional complete-
ness of B fails.

(iii) Corollary 3.6 extends also to the abelian case. If & and & are abelian
categories, then the category of additive exact functors & —% is equivalent to the
category of monoidal homomorphisms of bicategories Rel(€)— Rel(#).

6. Matrices

In this section we will characterize bicategories of relations of Grothendieck
toposes.

In studying bicategories of relations of regular categories we have seen that pro-
ducts in the category lift to tensor products in the bicategory of relations. But, once
the bicategory of relations can be constructed and ‘good’ sums exist in the category,
then sums lift to the bicategory of relations: if B is a regular category with (finite)
disjoint and pullback-stable sums, then Rel(B) has (finite) bicoproducts and, con-
versely

Theorem 6.1. If B is a functionally complete ‘bicategory of relations’ having ( finite)
bicoproducts, then & =Map(B) has ( finite) disjoint and pullback-stable coproducts.
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Proof. For simplicity we give the proof for the finite case. To show that € =
Map(B) has coproducts we need to prove that the initial arrow Oy : O — X and the
codiagonal dy: X@® X — X are maps (O and @ denote initial and sum in B). By
using Lemma 2.5 it is enough to prove that the two arrows are comonoid homomor-
phisms: the needed equations for O, follow because O is initial and O;=1,; the
ones for dy follow from the fact that the injections i/ are now maps such that
0-i=1. So, to prove Ay dx=(0x® dx)Axqx, it is enough to prove that the two
arrows are the same when composed with injections, that is, that Ay-dx-i=4y,
and (0x®Jx)  Aygx-i=(because i is a map)=(0x-i®Jx-i)- Axy=A. Finally,
the counit preservation follows from the fact that tyg x =19 ((x@1y) and £;g,=
J;. Thus € =Map(B) has coproducts, and with the same argument as in Theorem
1.6 we can show that the definitions

rUs=68-(r@s)6°,  Oxy=Oy- O3

give local unions and initials which, moreover, are stable on both sides because of
the involution on B.

Observe that the compact closedness of B, and the fact that the involution is the
identity on objects, imply that bicoproducts in B are also biproducts. With standard
computations based on the previous facts it can be shown that initial maps
Ox:0— X are monos (Oy- Ox=1). Thus injections iy are also mono (iy-iy=1)
as well as jointly epic (iy-ixUiy-iy=1) and disjoint (iy-iy=Ox v)- As for the
stability of sums under pullbacks in & =Map(B), first observe that X& —, having
a right adjoint in B, preserves all colimits which exist in B, thus sums in B, hence
also in €. We just need to show that the lattice of subobjects of an object in € is
distributive. Since this lattice is isomorphic to the lattice of coreflexives on the ob-
ject in B (see Lemma 4.2) and composition of coreflexives reduces to intersections
(see Lemma 4.1), this last reduces to the stability of local unions under composi-
tion. [

Remark 6.2. In proving Theorem 6.1, we showed that the assumption that B has
bicoproducts and the compact closedness of B, force B to be ‘semiadditive’ — initial
O — X and codiagonal X@® X — X arrows are maps such that the adjoints provide
bicoproducts with a structure of biproducts. Hence B is a ‘distributive bicategory’
(see Remark 3.7). Conversely, given such a bicategory B we can construct the free
semiadditive bicategory Matr(B) as follows:

— objects are families e: X — |B| of objects of B;

— arrows r: (X, e)— (Y, e’) are matrices r(x, y): e(x) —e(y) of arrows of B;

— composition of arrows is matrix composition;

— 2-cells are defined pointwise.

Matr(B) enjoys the following remarkable properties:
(a) Matr(B) is semiadditive;
(b) if 9% is semiadditive, then % = Matr(%) and thus the construction of
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Matr(—) is idempotent (see [5]);

(c) if B is Cartesian, then Matr(B) is Cartesian (define (X,e)®(Y,e’) as
(XxY,e®e’'), where (e®e’)(x, y)=e(x)®e’'(y), and similarly for arrows);

(d) if B is a ‘bicategory of relations’, then so also is Matr(B).

As a consequence of property (d), if € is a geometric category, then
Map(Matr(Rel(¢))) is the free geometric category having all small indexed disjoint
and universal sums. By applying Property (d) and Theorem 6.1, we just need to
check that if B is functionally complete, then Matr(B) is such. For details of this
and related results see [3].

Theorem 6.1 applies to bicategories of relations of a Grothendieck topos as
follows:

Theorem 6.3. A bicategory B is of the form Rel(€) with & a Grothendieck topos iff
(1) it is a functionally complete ‘bicategory of relations’;
(ii) it is effective;
(iii) it has small bicoproducts;
(iv) it has a small set G of generators (rCs: XY iff for all x:U—-X, UeG,
r-xcs-x). U

The proof relies on the previous theory of relations and the theorem of Giraud.

Remarks 6.4. (i) Observe that, starting with Giraud’s axioms for a Grothendieck
topos &, the distributivity of Rel(€¢) gives immediately that € has all coequalizers:
if f,g: X—Y is a parallel pair of maps, then the splitting of the free equivalence
relation r'=|J r" generated by r=g- f°Uf- g° is the coequalizer of f,g.

(i) Another consequence of property (b), Corollary 3.6 and the above remark is
the following: if &, % are Grothendieck toposes, then the category Top(&, %) is
equivalent to the category of monoidal and local union preserving homomorphisms
Rel(#)—Rel(€) which is equivalent to the category of sum and tensor preserving
homomorphisms Rel(¥)— Rel(¢).
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