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Introduction 

In this paper we continue the programme (initiated by Benabou [2] and Lawvere 
[ 121) of developing the theory of bicategories as a calculus of modules. Here we in- 
vestigate some basic examples: sets and relations, additive relations, ordered sets 
and ideals. 

These examples share with bicategories of the form V-mod (‘V-categories and 
V-profunctors, 7’ a cocomplete symmetric monoidal category) the structure of a 
tensor product 

0 
BX[B---+B 

which is a homomorphism of 
symmetric and with identity I. 
equipped with diagonal 

A,:X+X@X 

and terminal 

bicategories, and which is coherently associative, 
If W is Cartesian, then every object X in IB comes 

arrows which satisfy some basic laws. This leads to the first main notion of the 
paper, ‘Cartesian bicategory’. A locally posetal bicategory is Cartesian if it has a 
symmetric tensor product, every object is a cocommutative comonoid object, every 
arrow is a lax comonoid homomorphism and comultiplication and counit have 
right adjoints. Alternatively, a locally posetal bicategory is Cartesian if the sub- 
bicategory of arrows with right-adjoints has finite biproducts, each horn-category 
has finite products and the obvious induced tensor product on arrows is functorial 
(Theorem 1.6). We deal only with locally posetal bicategories even though there is 
no doubt that the general notion of Cartesian bicategory may be developed to cover 
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the examples of sets and spans, and categories and profunctors. 
After describing the first consequences of our definition, we investigate the 

second main notion of ‘discrete object’ in a Cartesian bicategory. Modulo a ‘func- 
tional completeness’ axiom, bicategories of relations are characterized by Cartesian- 
ness and discreteness of every object (Sections 2, 3), and these properties together 
with small bicoproducts, effectiveness and generators characterize bicategories 
of relations of a Grothendieck topos (Section 6). Bicategories of ordered objects 
in an exact category can be characterized as follows: they are Cartesian, closed 
under the Kleisli construction, and the subbicategory of discrete objects is func- 
tionally complete and generates (in a suitable sense). That our notion of discrete 
object is correct for recovering the surrounding notion of ‘set’ is further supported 
by the following example. In the bicategory SL of sup-lattices considered in [lo], 
our notion of discrete object coincides with the notion of ‘discrete space’ given 
there. 

To finish, let us remark that our theory of relations differs from others in the 
literature (for example [6,8]) in that local limits and involution are not primitive. 
As a gift for this more bicategorical setting, we have a theory flexible enough not 
just to cover the examples of relations and ideals, but also to give a simple and self- 
dual characterization of bicategories IB of additive relations, as follows: IB is Car- 
tesian and cocartesian, every object is discrete and codiscrete, and reflexive and 
coreflexive arrows have splittings (Section 5). 

1. Cartesian bicategories 

In the following, IB denotes a locally posetal bicategory. We usually denote 
objects of 5 by X, Y, 2, . . . and arrows by r, s, t, . . . . Being locally posetal, [B is in fact 
a 2-category. 

Definition 1.1. A tensor product in I6 is a homomorphism of bicategories 

equipped with an identity object I and natural isomorphisms 

&I :X-+X@I; y:X@ Y-+ Y@X, 

a:X@(Y@Z)+(X@ Y)@Z 

satisfying the classical coherence conditions (sufficient since 5 is locally posetal). 

Definition 1.2. A Cartesian structure on a bicategory IB consists of 
(i) a tensor product in fB, 

(ii) on every object X in IB, a comonoid structure. That is, arrows 

Ax: X-+X8X, tx :x-+r. 
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These data are required to satisfy the following axioms: 
(A) The arrows dx, ti satisfy the equations for X to be a cocommutative 

comonoid object; 
(U) Each arrow r:X-+ Y is a lax comonoid homomorphism. That is, 

(M) Comultiplication dx and counit tx have right adjoints A:, t;. The only 
cocommutative comonoid structure on X, with structure arrows having right ad- 
joints, is (X, dx, tx). 

In fact we will prove in Theorem 1.6 that a bicategory fE3 admits at most one (up 
to iso) Cartesian structure, so justifying the name Cartesian bicategory. 

Remark 1.3. (i) The arrows 

A;:X@X+X, t;: I-+X 

which are right adjoints to Ax and tx respectively, as stipulated in axiom (M), pro- 
vide each object X with a commutative monoid structure which also satisfies axiom 
(U). Just observe that if f and g have right adjoints f* and g*, then f@g has a right 
adjoint f *@g* and, for any arrow r, we have f. r c g iff r. g* cf*. In fact, Bop 
(arrows reversed) has a Cartesian structure induced from B. 

(ii) Further consequences of axiom (M) are: 

X@X 
A,OA, 

-X@X@X@X 
1,0Y@ 1, 

,X@X@X@jX 

A 
=X@X 3 X @ X@ X 0 X (forgetting associativities); 

t*o tx 
X@X- I@I @ 

tx@x 
-I=X@X- I; 

To see this, notice that using the coherence conditions the left-hand arrows yield 
commutative comonoid structures on X@ X and I. 

(iii) The following is an (obvious generalization of a) result of Fox [7]. Consider 
a bicategory LB with a tensor product. Then the tensor product is the biproduct iff 
every object has a cocommutative comonoid structure and every arrow is a comonoid 
homomorphism. Fox shows that if 5 is a symmetric monoidal bicategory, then the 
bicategory HA@) of cocommutative comonoids in B (with comonoid homomor- 
phisms) has biproducts, and the tensor product in B is the biproduct iff the forgetful 
functor HA( IB) --+ 5 is an isomorphism. The result extends to our notion of Cartesian 
bicategory. Given a bicategory B with a symmetric tensor product, let HA(B) be the 
bicategory of cocommutative comonoids in lE3 and lax homomorphisms, and let 
HA,(B) be the full subbicategory of HA(B) determined by the comonoids for 
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which multiplication and counit have right adjoints. Then H&(5) has a Cartesian 
structure. Moreover, 5 has a Cartesian structure iff HA,@) + 5 is an isomorphism. 

(iv) A tensor product on 5 induces in an obvious way a tensor product on 5” 
(2-cells reversed). We call a Cartesian structure on 5” a ‘cocartesian’ structure on 
5. 

Example 1.4. (i) 5 = Rel(E), the bicategory of relations in a regular category 8 with 
a choice of products. 

(ii) IB=Ord(E), the bicategory whose objects are ordered objects in a regular 
category E with a choice of products, and whose arrows are ideals. 

(iii) 5 = the bicategory of inf-semilattices and (left-exact) functors. 
(iv) 5 = Par(&), the bicategory of partial maps in a left-exact category 6 with a 

choice of products satisfying all the axioms of a Cartesian bicategory except for the 
requirement for tx to have a right adjoint. A stronger property than axiom (U) is 
satisfied in this case: every arrow is a strict comultiplication homomorphism. 

Definition 1.5. An arrow r : X-+ Y in a bicategory 5 is called a map if it has a right 
adjoint r*. Denote by Map(5) the subbicategory of 5 determined by these maps. 
Observe that a tensor product on 5 induces a tensor product on Map(5). 

Theorem 1.6. Let 5 be a locally posetal bicategory. If 5 has a Cartesian structure, 
then 

(i) Map(5) has finite biproducts, 
(ii) 5 locally has finite products and the identity arrow of I is the local terminal 

in 5(I, I), 
(iii) Biproducts and the biterminal object in Map(5) may be chosen so that the 

following formulas hold in 5: 

r@s=(p*-r-p)n(p*-sap) (p’s denote the appropriate projections). 

Conversely, if 5 satisfies properties (i) and (ii) and the formulas of (iii) define a 
(functorial!) tensor product on 5, then 5 has a Cartesian structure. 

Proof. Suppose 5 has a Cartesian structure. To prove (i), by Remark 1.3(iii), we 
need just to show that every map is a comonoid homomorphism. From Remark 
1.3(i), every arrow is also a monoid homomorphism. So, if f is a map, then 
f ** A * C A*- (f *@ f *) and f *- t* c t*. The opposite inclusion must hold for left 
adjoints and therefore, by axiom (U), A.f=(f@f)-A and t-f=t. 

To prove (ii), first notice that A * - (r @ s) - A G r, since 

(using the naturality of ,Q). Now, it is straightforward to show that the formula 

rns=A*- (r@s)- A 
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defines the local intersection. The local terminal is, of course, given by the formula 

To prove (iii), it is just necessary to compute (p* - r- p) fl (p* - r - p) as r @ s. 
Conversely, suppose B satisfies (i) and (ii) and we define a tensor on B by the 

formulae in (iii). It is straightforward that the conditions (A) and (M) for U/3 to be 
Cartesian are satisfied. It remains to prove condition (U). Observe that composing 
on the left with a map, or on the right with the right adjoint of a map, preserves 
local intersections and local terminals. Using this fact and the definition of the 
tensor product it can be shown that d *. (r @ r) . A = r and condition (U) for d 
follows from the adjunction d -iA *. Finally, condition (U) for t follows from the 
fact that tx is the local terminal mx,P Cl 

Corollary 1.1. Let ff : LB + iD be a homomorphism, where B, D are Cartesian 
bicategories. Then the folio wing are equivalent: 

(i) [F is a strict monoidal functor; 
(ii) ff restricts to a strict monoidal functor Map(B) +Map( !D). 

Proof. That (i) implies (ii) is obvious. If (ii) holds, then IF preserves I, hence the 
terminal maps, and thus projections and diagonals. Thus IF preserves local intersec- 
tions and, by the previous theorem, the tensor product on arrows. Cl 

2. Bicategories of relations 

(i) An object X in a Cartesian bicategory is discrete when the Definition 2.1. 
multiplication 0; and the comultiplication dx satisfy 

03 Lg. A*=@*@ 1). (1 @Ll). 

(We are forgetting the associativity in the middle.) 
(ii) A Cartesian bicategory is called a ‘bicategory of relations’ if every object is 

discrete. 

Remark 2.2. If X, Y are discrete, then X@ Y is also; I is always discrete. So, if B 
is a Cartesian bicategory, then the full subbicategory determined by the discrete 
objects is always a ‘bicategory of relations’. 

Example 2.3. (i) The bicategory of relations of a regular category 6 is, of course, 
a ‘bicategory of relations’. To avoid confusion between these examples and the 
abstract notion we will always use quotation marks for the latter. 

(ii) If B is Ord(cF’), then an object is discrete iff it is an equivalence relation. (See 
Section 6 on ordered objects.) 
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Theorem 2.4. A ‘bicategory of relations’ admits transfer of variables; that is, it is 
compact closed [ 111. In particular, the involution ( )” is the identity on objects, and 
satisfies the following laws: 

(r@l).dc(l@r”)SA.r and A*.(r@l)Cr.d*(l@rO). 

Proof. Define qx and &X as follows: 

G *x 
qx=I-x- mW, 

4 t, &X=X@X-X- I. 

We need to prove that Xi X; that is, 

and 

VOl 
X’;I@X- 

l@& 
xgxgx- X@ 17x= lx 

l@rl 
X=+X@ l- 

&@l 
X@X@X- I@XGX= lx. 

The first composition can be computed as 

=A”* (1 @~x,x).dx. n$- (mx,@1)L4 = l-l= 1. 

As for the second composition, observe that it can be deduced from the first by 
means of the symmetry isomorphism y. So, B is compact closed and, as in [ 111, we 
can deduce that there is a natural isomorphism of ordered sets (transfer of variables) 

xgri,, 
1 (*) 

x-l,20 Y 

16311 given by P=XzX@I-----+ 
r@l 

X@ Y@Y- Z@ Y. The inverse is defined in a 
similar way by means of E. The naturality of the correspondence (*) in X and 2 
means 

X~Y-r,Z-lf,Z~ 
(Z) ^ . 

XGz@ Y 
so1 

-Z'@Y 

Moreover, by defining the opposite of an arrow XL Y as 

one can prove that ( )” becomes an involution on B. That is, we have the properties 

1” = 1, (r-s)’ =s”. r”, (rO)O=r and rcs implies r” &so. 
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Further, we have the naturality in Y of the correspondence (*), 

X@Y 
(Y) ,. 

1%X@ yr.Z 

X+z@Y 
1 @s” 

-----+Z@ Y’ 

Finally, to prove the stated laws, let us compute d * - (r @ ri and (r. d *j : 
n*.(rOTj=(n*.(iOr).(rOi)j=(d*.(iOr)j.r=(iOro).d*-.r 

and 
(d*j=(r~i).df. 

Since r. d * c d * - (r@ r), to prove the first law it suffices to show that d*- = d . But 

1Qrl A”=X~X@I- xgxgx- ‘*@’ X@X=A~A*-(l&nx.&A=A. 

In a similar way we can prove the second of the two laws. Cl 

Observe that axiom (U) does not play any role in the proof that 5 is compact 
closed. Axiom (U) is needed only to prove the two stated laws. 

A consequence of the discreteness axiom is that the order between maps is 
discrete; that is, Map(B) is a category. 

Lemma 2.5. In a ‘bicategory of relations’ an arrow XL Y is a map iff it is a 
comonoid homomorphism iff r -I r O. 

Proof. We have already proved that a map is a comonoid homomorphism (Theorem 
1.6). We need just to prove that if an arrow r is a comonoid homomorphism, then 
r O is right adjoint to r. By using the definition of q and E, we can compute the com- 
positions 

r. f-O = 
t*@ 1 

Y%@ Y- X@ Y%X@X@ ym 

l@A* 
xg Y@ Y- 

t*Q 1 
= Y=G@ Y- xg YSX@X@ Y= 

lQA* 
Y@ Y@ Y- Y@ Y- lot Y@r=y 

t*Q 1 
= Y%@ Y- 

i-01 xg Y- 
A@1 

Y@ Y- 

l@A* 
Y@ Y@ Y- 
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r” .r=XAYsI@Y 
t*@ 1 A@1 

-X@ Y- 
l@r@l 

X@X@ Y- 

xgrgr 
1 @A* 

-X@ Y- lBt X@FX 

=XZ]@X t*O1 -x&Y 
A@1 l@rOr 

-X@X@X- 

X@ Y@ Y loA* -X@ Y 
10t 

-X@I~X 

t*@ 1 
_>X’;I@X- 

A@1 
X@X- 

1 @A* 
X@X@X- 

l@r 
X@X- X@Y 

10t 
-X@I?X 

t*@g 1 
=x+@x- 

A@1 
X@X- 

l@A* 
X@X@X- 

X@X 
l@t 

-X@lZX 

t*@g 1 
2X%@X- 

A” A 
xgx-x- X@X 

l@t 
-X@IZX 

=l*l=l. ??

Observe that in the proof of r ‘a r 2 1 the discreteness axiom is not used and that 
the role of the hypothesis that r is a comonoid homomorphism can be split in two: 
that r is a comultiplication homomorphism is used in the proof of r a r O c 1 (r is a 
‘partial map’); that r is a counit homomorphism is used in the proof of r” - r z 1 
(r is ‘entire’ or ‘everwhere defined’). 

Corollary 2.6. In a ‘bicategory of relations’: 
(i) iff is a map, then f*=f”: in particular A*=A” and t*=t’; 

(ii) if f, g are maps and f c g, then f = g; 
(iii) r is a partial map iff r is a comultiplication homomorphism; composing on 

the right with a partial map r or on the left with r” preserves local intersections; 
(iv) r is entire iff it is a counit homomorphism; composing on the right with an 

entire morphism r or on the left with r O preserves local terminals; if a composite 
s - r is entire, then r is entire. 

Proof. (i) Follows from uniqueness of the adjoints and the previous lemma. 
(ii) Obvious since adjoints are opposites. 

(ii) If r is a comultiplication homomorphism, then by Lemma 2.5 it follows that 
r - r O c 1, that is, that r is a partial map; conversely, if r. r O C_ 1, then by the law of 
Theorem 2.4 we have 

A~r~(r~r”@l)~A~r=(r@l)~(ro@l)~A~r~(r@l)~(l@r)~A 

=(r@r). A. 
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The preservation property is now immediate from the definition of local inter- 
sections. 

(iv) It has already been observed that if r is a counit homomorphism, then 
r is entire. Conversely, suppose r is entire. Then because t is a local maxi- 
mum t.r~t~r”. r>t. So m~r=t”. t.r=tO.t=m. Finally, if t.s.r=t, then 
t.rZt.s.r=t. 0 

In the presence of discreteness we can also improve Corollary 1.7 as follows: 

Corollary 2.7. Let IF - B -+ D be a homomorphism of bicategories between ‘bi- 
categories of relations’. Then the following are equivalent: 

(i) iF is a strict monoidal homomorphism; 
(ii) 1F restricts to a strict monoidal functor Map(B)+ Map(B); 

(iii) [F preserves local intersections and I. Cl 

The main point which we have not so far covered is that (iii) implies (i). This 
reduces easily to showing, under assumption (iii), that projections are preserved (up 
to isos) which follows from 

Lemma 2.8. In a bicategory of relations let px :X@Y-+Xandp,:X@Y+Ybe 
the projections. Then 

(i) propi=mx,Y, &Px~P~~PY=~ 

(ii) iff,garemapssuch thatg~f”=mxyandfo~f~go-g=1, then themap 
<A g> = (f @ g) - A is an isomorphism, and hence f spx and gsp y. 

Proof. Properties (i) are easily proved for any Cartesian bicategory. To prove 
(ii) first observe that the condition go - g(7 f O + f = 1 means exactly that 
(f,g>“.(f,g)=l. Then 

Thus ( f, g)” is entire ((f, g) . (f,g>” = 1). So <f, g) is an isomorphism. Cl 

Remarks 2.9. (i) Every strict monoidal homomorphism [F between Cartesian bi- 
categories preserves discrete objects as well as q and E. Therefore IF preserves also 
the involution when restricted to the full subbicategory determined by the discrete 
objects. 

(ii) Every bicategory of relations satisfies Freyd’s modular law [8]: s - r n t c 
(t - r O ns) - r. To see this notice that 
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(iii) Given a multisorted theory U formulated in the (3, A, t, =)-fragment of logic, 
we can construct out of U a ‘bicategory of relations’ IB(U) as follows. Objects a are 
finite words a = (al, . . . , a,) of basic sorts; arrows r : a+/3 are (equivalence classes 
of) formulae I&Y) having free variables of sorts (a, 8); 2-cells are entailments. 
Composition is given by s - r(x, z) = @(r-(x, y)r\s( y, z)) and the tensor product by the 
conjunction. The comultiplication d is the formula 

d(x, X’J”) =((X=X’)A(X=XN)), 

and the discreteness axiom expresses the symmetry of equality. The converse can 
also be proved: given a (small and locally small) ‘bicategory of relations’ [B, there 
exists a theory U such that B(U) is equivalent to ES. From this point of view, we can 
think of a small and locally small Cartesian bicategory 5 as a theory in which equali- 
ty is not assumed symmetric. 

(iv) Let SL be the bicategory of sup-lattices considered in [lo]. Then SL has a ten- 
sor product. Let Mon(SL) be the bicategory of commutative monoids in SL with 
morphisms f : X --+ Y being the sup-lattice ones such that f(x. y) <f(x) .f( y) and 
f(1) 5 1. Let IB be the full subbicategory of Mon(SL) determined by the monoids 
such that the multiplication and unit have left adjoints. Then, by Remark 1.3(i), IB 
is Cartesian. Observe that Mon(SL)Co is the bicategory of cocomplete, symmetric 
monoidal categories and cocontinuous monoidal functors between them. A reason 
to choose such morphisms in Mon(SL), besides the formal fact that with these mor- 
phisms it is Cartesian, is that if PX, PY are sup-lattices of ‘parts’, then a relation 
r : X -+ Y is the same as a cocontinuous functor f: PY-+ PX, and the conditions 
f(x . y) of . f( y), f( 1) s 1 are satisfied by any functor since PX, PY are left exact. 

The subbicategory [Disc of the bicategory [B determined by the discrete objects is 
a ‘bicategory of relations’ (see Remark 2.2). We will show now that Map([B& 
coincides with the category of discrete spaces defined in [lo]. The objects of 
Map(Bdi,,) are clearly locales in which the external maps XL X@ X and XL I 
are cocontinuous. We need to show that our discreteness axiom is equivalent to the 
openness of the pair d id *, that is, d - A*. (A*@ 1) 2 d*. (100). But 

=n*. (1@((1@4)4)) 

= (d*od*)~(l~y~l)~(l~((l~d)~d)) 

=(n*On*).(lOyOl).(lO((dOl).d)) 
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=(n*@d*)(l go @ l)(l @n)=(Ll*@Ll*)(l@((Ll@ l)Ll)) 

In the other direction, if the discreteness axiom holds, then from the laws of 
Theorem 2.4 we have: n “(1 @d) cd - A *(A O @ l), and because d * = d O (Corollary 
2.6)wehaved*.(lOd)c_d.d*.(~*Ol).Thus,sinceeveryarrowisalaxmonoid 
homomorphism and since d i A *, we get the opposite inclusion also. 

From Corollary 2.5 we have that an arrow f is a map iff the adjoint f” is a 
monoid homomorphism, so that Map(B,i,,) is the same as the category of discrete 
spaces. 

3. The characterization theorem 

We now give a proof of the characterization theorem for bicategories of relations 
of regular categories. The proof here is slightly different from the one given by 
Freyd [8]. One difference is that by the systematic use of our calculus of (0, I, A, t) 
we have been able to avoid the use of argument by contradiction. 

Definition 3.1. A ‘bicategory of relations’ is functionally complete if for every 
arrow r:X-+I there exists a map i:X,--+X such that i”-i=l and t-iO=r. The 
map i is called a tabulation of r [8]. 

Remark 3.2. The ‘bicategory,of relations’ B(U) associated to a theory U (see Remark 
2.9(ii)) is, in general, not functionally complete. To say that !3(U) is functionally 
complete is to say that for each formula r(x) of sort a! there exists a definable func- 
tion symbol i, : a, + a such that r(x) is equivalent to W(i(x’) =x) and such that 
i(x) = i(x”) t= x=x”. Given U we can of course add function symbols to have an ex- 
tension U' of U (having the same models as U) such that U' is functionally complete. 
We will see later on (Section 4) how to construct lB(U') out of B(U) in a purely 
algebraic way. 

Lemma 3.3. Let i be a tabulation of r :X--+ I. Then 
(i) for each map f : 2 -+X such that t. f O c r there exists a unique map h : Z -+X, 

such that f = i e h; 
(ii) if t. f o = r, then t - h O = t ; that is, h O is -entire. 

Proof. (i) Define h as h = i O -f. Then h is a partial map, being the composite of par- 
tialmaps.Furthert~h=t~io~f=r~f~t~fo~f>t,andthust~h=tandhisentire. 
Therefore, h is a map and i- h =i- i” -f C f. Hence from Corollary 2.6, is h=f. 
Uniqueness follows from the fact that i O - i = 1. 
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(ii) t - ho = t-f” - i = r. i= t; that is, ho is entire. Observe that since h is a map ho 
entire means that h . ho = 1. 0 

Corollary 3.4. Every arrow r : X + Y has a tabulation, that is, a jointly manic pair 
of maps f, g such that 

(i) g.f”=r; 
(ii) if x, y is another pair of maps such that ys x0 c r, then there exists a unique 

map h such that f. h =x and ge h = y and such that, if y - x0 = r, then ho is entire. 

Proof. (i) Consider the transpose i: : X@ Y --) I = ES (r @ 1) of r arising from the com- 
pact closedness. Let i= (f, g) be a tabulation of ?. Then f, g are jointly manic. To 
prove that g. f O = r, let us compute the arrow corresponding to t - i O = P by the com- 
pact closedness: 

Z@Z@ Y 
&@I 

-I@ YG Y 

Thus g-f” =r. 
(ii) We need just to prove that the condition y - x0 c r is equivalent to t. (x, y)” c ? 

and then apply Lemma 3.3. This follows by a calculation similar to the above using 
compact closedness. El 

Theorem 3.5. Let B be a functionally complete bicategory of relations. Then 
(i) G = Map@) is a regular category - that is, a left exact category in which ex- 

tremal epis are stable under pullback and every arrow factors as an extremal epi 
followed by a mono; 

(ii) the function assigning to each relation < f, g> of 6’ the arrow g. f O of B ex- 
tends to a biequivalence of bicategories. 

Proof. (i) Fr0.m Corollary 3.4, a pullback of r, s in Q = Map(B) is a tabulation of 
so - r; so 6’ is left exact, and monos i in 8 are characterized by the equation i O - i = 1. 
Now letf : X-+ Y be an arrow in 6 and consider Y f”, X AI. Lemma 3.3 provides a 
factorization of f as f = i - h, with i mono and ho entire. From this it follows that a 
map h is extremal epi iff h O is entire; that is, iff h - ho = 1. Finally, if f - h’= h -f’ is 
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apullbackin& andfisanextremalepi, thent.f’“~tSh’.f’“=tSfo.h=tSh=t. 
Hence f’” is entire and f’ is extremal epi. Thus 8 is a regular category. 

(ii) Since the assignment is the identity on objects and locally an isomorphism we 
need only prove the functoriality. But this is an instance of Corollary 3.4(ii). ??

Since monoidal homomorphisms between ‘bicategories of relations’ preserve 
tabulations, we have 

Corollary 3.6. Suppose B and D are ftinctionally complete ‘bicategories of rela- 
tions’. Then the category of monoidal homomorphisms B + I3 is equivalent to the 
category of left exact extremal-epi preserving functors Map(B) + Map( ID). 0 

Remark 3.7. Using the above characterization theorem it is easy to characterize 
bicategories of relations of other important classes of categories. For example, 
bicategories of relations of Heyting categories (those regular categories such that for 
each XL Y the inverse image functor f * : Sub(Y) -+ Sub(X) has a right adjoint Vf) 
can be characterized as the functionally complete bicategories of relations having 
all right Kan extensions (and thus all right liftings, from compact closedness). 
Again, bicategories of relations of geometric (coherent) categories (those regular 
categories having pullback-stable (finite) unions of subobjects) can be characterized 
as those functionally complete ‘bicategories of relations’ which are locally (finitely) 
cocomplete, with local unions preserved by composition (distributive ‘bicategories 
of relations’). Finally, bicategories of relations of elementary toposes can be 
characterized as those functionally complete ‘bicategories of relations’ such that 
B(X, - ) is representable in Map( !B). A good set of operations and equations to ex- 
press this representability has been found by Freyd. 

We will investigate bicategories of relations of Grothendieck toposes in the last 
section, 

4. Ordered objects and ideals 

In this section we characterize the bicategory of ordered objects and ideals of an 
exact category &. An ordered object in 8 is a relation p : X+X such that 1 c p and 
p - p cp; that is, it is just a monad in IB = Rel(G). An equivalence relation in 6’ is 
a symmetric monad in IB; that is, a monad such that p =p”. Comonads in IB are also 
important; we show now, following [8], that the bicategory of symmetric comonads 
provides the free functional completion of a ‘bicategory of relations’. We begin with 

Lemma 4.1. In a ‘bicategory of relations’: 
(i) the class of symmetric comonads coincides with the class of ‘corefexives’ (ar- 

rows a such that a c 1); 
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(ii) if a and b are two reflexives on X, then b - a = an b. 

Proof. 

If bcl, then b.aGanb. But 

cAO(l@b)(l@ao)Aa=(lnb-a’)-aCb-a. 0 

As in any bicategory, a Kleisli object for a monad p is an object XP and an ar- 
row X-X, which represent the functor p-Alg(X, - ). The representability implies 
that the arrow e : X-+Xp has a right adjoint e* such that e*. e=p and (in the 
locally posetal case) e. e* = 1. These two equations characterize the Kleisli construc- 
tion for p as a splitting of the idempotent p. Dually for a comonad a, the splitting 
i* . i = 1 and i - i* = a of a as an idempotent characterizes the Kleisli construction of 
the comonad a. If lB is a ‘bicategory of relations’, then the comonad a is symmetric 
and the adjoint i* of the splitting i of the comonad a coincides with i”. Observe that 
‘bicategories of relations’ can admit a Kleisli construction only for symmetric 
monads and comonads. 

Lemma 4.2. A bicategory of relations is functionally complete iff every symmetric 
comonad has a Kleisli construction; that is, iff coreflexives split. 

Proof. First observe that the function ‘domain’, 

which associates to each r : X-t I its domain 9 (r) = 1 n r O - r, is an isomorphism, 
whose inverse is given by composition with t. For, if a is a coreflexive, then 

~a”~Ao~(a~l)-(l~to~t~a)A=ao~Ao~(a@to~t~a)~A 

=a- (ant0 - t- a)Ca. 

Conversely, if r:X-+I, then t- B(r)=t-(lnr”-r)Ct-ro-rCr, because tl=ll. 
Further, 
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Now, suppose IB is functionally complete and let a be coreflexive. If i is a tabulation 
of ta a - i” - i= 1 and t+ i” = t. a - then te is i” =t. a, and hence, by the previous 
remark, i - i O = a. Conversely, let r : X-+ I be an arrow and suppose coreflexives 
split.Leti.i”=9(r),i”. i=1beasplittingof9(r);thent~i”=tSi.io=tS g((r)=r, 
again by the previous remark. Thus i tabulates r. ??

A virtue of the notion of Cartesian bicategory is that it is stable under the splitting 
of idempotents, whereas Freyd’s notion of allegory is only stable under the splitting 
of symmetric idempotents. The usual construction of the splitting of idempotents 
applied to Rel(8) simply as a category gives the bicategory of ordered objects in 8 
and ideals between them. The following lemma will be used in the theory of ordered 
objects, as well as in discussing the free functional completion of a bicategory of 
relations. 

Lemma 4.3. Let U3 be a Cartesian bicategory and let @ be the class of monads (com- 
onads) in B. Then 

(i) the splitting 2 of the monads (comonads) in 4 is a Cartesian bicategory 
(assuming B to be a ‘bicategory of relations’ in the comonad case), 

(ii) if I3 is a ‘bicategory of relations’ and $ is the class of symmetric monads 
(comonads) in B, then g is a ‘bicategory of relations’. 

Proof. (i) Recall that 2 has as objects the monads (comonads) of B and as arrows 
r : p+ q the arrows r of 5 such that rp = r = 4. r. It is easy to see that 2 is a 
bicategory (the identity arrows are p : p +p). The tensor product in B induces one 
in 2. In the monad case define AP : p+p@p by A, = (pop). A and the adjoint 
A; as p - A *, tP simply as t and the adjoint as t *. In the comonad case define A, as 
Asp and the adjoint A; as p. A”,_ P t as t.p and the adjoint t*ap as p. to. A 
straightforward calculation shows @ to be Cartesian. 

(ii) We need only to prove axiom (D). First observe that if p c i, then p is a partial 
map,sothatA~p=(p~p)~A.HenceineachcaseA,~A~=(p~p)~A~A”-(p~p). 
Now, in the comonad case, this last is (p@pA”). (p@A sp), that is (l,@A;). 
(A,@ lP). In the monad case, first observe that from the basic law of Theorem 2.4, 
we have (pop) - A = (1 @p)A,. Then 

=(l,@A;). (APO lP). 0 

Remarks 4.4. (i) If B is a ‘bicategory of relations’, then taking S to be the class of 
coreflexives Car(B) of B the splitting Cor([Bj is the free functional completion of 
B: 8 = Map(Cor(!lQA) is a regular category, and there is a natural equivalence be- 
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tween the category of monoidal homomorphisms 5 --+ Rel(S), S a regular category, 
and the category of left exact image-preserving functors E + S. In particular, if 5 
is the ‘bicategory of relations’ associated to a theory -IT, then 8 =Map(Cor(5)A) is 
the logical category 6(U) syntactically constructed in [ 131 or [9]. 

(ii) If 5 = Rel(Q), define Man(5) (= Ord(&)) as the splitting of all monads in 5. 
Clearly all monads in Mon(5) have a splitting (that is a Kleisli construction) and 
Mon(5) is the free completion of 5 with respect to the Kleisli construction. An easy 
computation shows that a bicategory 5 has the Kleisli construction for monads in 
5 iff the canonical embedding 5 --+Mon([B) is an equivalence. (For the details of a 
more general result see [5] .) Hence the construction Mon( - ) is idempotent. By the 
previous theorem Mon(5) is Cartesian, if 5 is. In fact more is true: 

Lemma 4.5. If 5 is a ‘bicategory of relations’, then Man(5) is compact closed, and 
canonically (( -)“)” = 1, (-)” @ (-)” = (- @ -)” (actual equazity!). 

Proof. Define (X,p)” =(X, p" ) and 

&(X,p) = (x, P) 0 (x, P)” -+I=t. A’(p@p”)=~x. (pop”). 

A straightforward computation using the basic law of Theorem 2.4 shows that 
(X,P)-I(x,P)“. 0 

If 5 is a ‘bicategory of relations’, define Eq(5) as the splitting of symmetric 
monads in 5. Then Eq(5) is again a ‘bicategory of relations’. If 5 =Rel(&), then 
Eq(5) is the bicategory of equivalence relations in 8 and compatible relations be- 
tween them. Recalling that a regular category is exact if every equivalence relation 
in 8 has a coequalizer e whose kernel is the given equivalence relation, it can easily 
be seen that 8 is exact just when in 5 = Rel(&) every symmetric monad has a Kleisli 
construction; that is, iff symmetric monads split in 5. Following Freyd, we will call 
such bicategories effective. From the above discussion the following characteriza- 
tion theorem clearly emerges: 

Theorem 4.6. A bicategory 5 is biequivalent to a bicategory Ord(&) of ordered ob- 
jects (and ideals between them) in an exact category 8 iff 

(i) 5 is Cartesian; 
(ii) every monad in 5 has a Kleisli construction; 

(iii) for each object X in 5 there exists a discrete object X0 and a monad X-+X 
whose Kleisli construction is isomorphic to X0; 

(iv) if a C_ Ix and X is discrete, then a splits. 

Proof. If 5 is such a bicategory, then define [BO as the bicategory of discrete ob- 
jects. Then [BO is functionally complete. To see this we need to show that if a c lx, 
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X discrete, and if i*i = a, i - i* = 1 is a splitting of a, then the domain X’ of i : X/-+X 
is discrete. But 

Ax. A$=A,. i** iA$=(i*@i*). Ax- A;(i@i) 

=(i*@i*)(l @A*). (A@ 1). (i@i)=(i*@i*A*)- (Ai@i) 

=(i*@(i*@A*. i*))- ((i@i)@A m i) 

=(l @A*)- (i*@i*@i*). (i@i@i)(A@ 1) 

=(l@A*).(i*i@i*i@i*i).(A@l)=(l@A*)(A@l). 

A similar argument shows that if p : X-+X is an equivalence relation in lBO, then 
the splitting X-+X, of p stated in (ii) still has discrete codomain. Thus 
8 =Map(QJ is an exact category, and conditions (ii), (iii) ensure that Ord(8) is 
equivalent to IB: Mon(BO) is a full subbicategory of Man(B); from (ii) and Remark 
4.4(ii), IB is biequivalent to Man(B); from (iii), the resulting homomorphism 
Mon( LB,) -+ B is a biequivalence. Cl 

Remark 4.7. If ~5’ is just a regular category, then Mon(Rel(8)) can be constructed 
and satisfies (i)-(iv) of Theorem 4.6. However, the discrete objects in Mon(Rei(8)) 
can be shown to be equivalence relations in 8, that is, the objects of the free exact 
category over the regular category 8. This explains why in the characterization 
theorem we assume 8 exact. 

5. Abelian bicategories 

Additive relations - relations in abelian categories - have been studied by various 
authors, but the only characterization known to the present authors is the early one 
of Puppe [14] which predates the notion of exact category and is thus rather com- 
plicated. The notion of ‘bicategory of relations’ leads to a simple and perfectly self- 
dual characterization of such bicategories. 

Definition 5.1. Let 1B be a bicategory with tensor product. [B is an abelian bicategory 
if both IB and 5” (2-cells reversed) are ‘bicategories of relations’ with respect to 
the (same) given tensor product. 

An abelian bicategory is functionally complete if both 5 and lBco are functionally 
complete as ‘bicategories of relations’. 

We will denote by 0, : I-+X and ax: X@X+X the maps which provide the 
Cartesian structure on 5”. 

Theorem 5.2. Bicategories of relations of abelian categories are characterized by the 
property that they are functionally complete abeiian bicategories. 
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Proof. To prove that IE3 = Rel(&), 6’ an abelian category, is a functionally com- 
plete abelian bicategory let us first observe that EP” being a bicategory of re- 
lations means that each object in IB is equipped with a cocommutative comonoid 
structure such that the comultiplication and the counit are right adjoints and are 
thus opposites of maps X@X-,X and I-+X. The opposite should be understood 
as the involution arising from the compact closed structure on 5. These maps 
are a commutative monoid structure on X. The codiagonal and the fact that the 
terminal is also initial provide such a structure on each object of II3 = Rel(8). Con- 
dition (U) (6 - (r@ r) c r- 6) is easily checked. Discreteness of X in IB”’ (6” - 6 = 

(10 6) - (6” @ 1)) follows from the fact that the square 

SO1 
xgxgx- X@X 

is a pullback in 8’ (additivity). 
For IBco to be functionally complete means that if r 2 1, then r splits. But this 

follows from the well-known fact that in an abelian category 8 every reflexive rela- 
tion is an equivalence relation [l]. Since 8 is exact, the coequalizer e of r gives a 
splitting of r in IB = Rel(G). 

Conversely, if IB is a functionally complete abelian bicategory, then 8 = Map@) 
is certainly a regular category and the structure on Bco provides the semiadditivity 
(coproducts = products) of 8 by the dual of Theorem 1.6. The discreteness of lBco 
just says that the arrows 

give rise to a compact closed structure on 5, by the dual of Theorem 2.4. Since the 
two compact closed structures are naturally equivalent by standard arguments on ad- 
junctions, there exists a unique isomorphism V;r : X+X such that (10 I/x). ifx = 

~xand~~.(l@V,)=sX. The condition (10 Vx) - fix = qx qualifies Vx as the map 
X-+X which gives the group structure on each object X, since it means that 

X fX 

is a pullback. Thus (X, 6, Ox, Vx> is an abelian group object in Map(5) and 
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V2 = 1. Thus 8 = Map(5) is additive, and it is also exact by the functional com- 
pleteness of 5”. By Tierney’s theorem that an exact additive category is abelian, 
8 is an abelian category. ??

Remarks 5.3. (i) By the dual of Theorem 1.6, the Cartesian structure of 5” pro- 
vides a logal union on 5 defined as r Us = 6 - (r 63 s) - 6”) for which the zero map 
X-% 1% Y is a minimal element. Moreover, the compact closed structure on 5 
induced from the structure on 5” yields an involution which coincides with the one 
given by the Cartesian structure on 5. (Just use the very definition of the involution 
and the fact that ~.(l@F/)=e(V@l), since tO.d(l@V)=tO. V.n(V”@l)= 
t O . A - (V@ l), because V2 = 1 implies V-’ = I/; but V-’ = I/. Similarly (10 V)q = 
(V@ l)~.) So, by the dual of Theorem 2.4 the bicategory 5 satisfies the dual of 
Freyd’s modular law (s - r U t 2 (s U t - r O ) - r) as well as the duals of Lemma 2.5, Cor- 
ollary 2.6, 2.7, . . . . In particular, it follows from the dual of the modular law that 
the lattice of subobjects of each object of Map(5) is modular. 

(ii) The most we can say about the interplay between composition and local unions 
in an abelian bicategory is the dual of the modular law. It is always true that if f 
is a map, then (r U s) -f ” = t-s f O Us - f O and f - (r U s) = fr U fs. Logically this means 
that g commutes with U. But it is not true that (r Us) -f 4 rf Usf or f O - (r Us) = 
f”. r U f O - s, as well as 0 -f O = 0; these conditions mean that substition preserves 
finite unions. Any of these conditions would imply that 5 is degenerate (Adelman). 

The category 2 of Hilbert spaces and continous linear maps is regular and ad- 
ditive, so that 5 = Rel(ti) is an abelian bicategory where just functional complete- 
ness of 5” fails. 

(iii) Corollary 3.6 extends also to the abelian case. If 8 and @ are abelian 
categories, then the category of additive exact functors 8 -+g is equivalent to the 
category of monoidal homomorphisms of bicategories Rel(8 )+Rel(g). 

6. Matrices 

In this section we will characterize bicategories of relations of Grothendieck 
toposes. 

In studying bicategories of relations of regular categories we have seen that pro- 
ducts in the category lift to tensor products in the bicategory of relations. But, once 
the bicategory of relations can be constructed and ‘good’ sums exist in the category, 
then sums lift to the bicategory of relations: if 5 is a regular category with (finite) 
disjoint and pullback-stable sums, then Rel(5) has (finite) bicoproducts and, con- 
versely 

Theorem 6.1.. 1f 5 is a functionally complete ‘bicategory of relations’ having (finite) 
bicoproducts, then 8 = Map(5) has (finite) disjoint and pullback-stable coproducts. 
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Proof. For simplicity we give the proof for the finite case. To show that 6 = 
Map(5) has coproducts we need to prove that the initial arrow Ox : 0 +X and the 
codiagonal 6X : X@ X*X are maps (0 and @ denote initial and sum in 5). By 
using Lemma 2.5 it is enough to prove that the two arrows are comonoid homomor- 
phisms: the needed equations for Ox follow because 0 is initial and 01= to; the 
ones for 6X follow from the fact that the injections i are now maps such that 
6. i= 1. So, to prove Ax+ 6x=(6&6x)Axgx, it is enough to prove that the two 
arrows are the same when composed with injections, that is, that A,. 6x. i=&, 
and (&@ 6~). 4~0~. i = (because i is a map) = (ax - i @ 6X - i) - Ax = A. Finally, 
the counit preservation follows from the fact that txgx= trol 0 (tx@ tx) and tIeI= 

a1. Thus 8 = Map(5) has coproducts, and with the same argument as in Theorem 
1.6 we can show that the definitions 

rUs=8* (r@s)6O, o,,=oy*o;; 
give local unions and initials which, moreover, are stable on both sides because of 
the involution on 5. 

Observe that the compact closedness of 5, and the fact that the involution is the 
identity on objects, imply that bicoproducts in 5 are also biproducts. With standard 
computations based on the previous facts it can be shown that initial maps 
Ox: O-+X are monos (0;. Ox = 1). Thus injections ix are also mono (ii - ix = 1) 
as well as jointly epic (ix- igUiY. ii= 1) and disjoint (i;- ix’ox, Y)- As for the 
stability of sums under pullbacks in E = Map( 5), first observe that X@ - , having 
a right adjoint in 5, preserves all colimits which exist in 5, thus sums in 5, hence 
also in 8. We just need to show that the lattice of subobjects of an object in 8’ is 
distributive. Since this lattice is isomorphic to the lattice of coreflexives on the ob- 
ject in 5 (see Lemma 4.2) and composition of coreflexives reduces to intersections 
(see Lemma 4.1), this last reduces to the stability of local unions under composi- 
tion. 0 

Remark 6.2. In proving Theorem 6.1, we showed that the assumption that 5 has 
bicoproducts and the compact closedness of 5, force 5 to be ‘semiadditive’ - initial 
0 +X and codiagonal X@X+X arrows are maps such that the adjoints provide 
bicoproducts with a structure of biproducts. Hence 5 is a ‘distributive bicategory’ 
(see Remark 3.7). Conversely, given such a bicategory 5 we can construct the free 
semiadditive bicategory Matr( 5) as follows: 
- objects are families e: X+ 151 of objects of 5; 
- arrows r : (X, e)+ (Y, e’) are matrices T(X, y) : e(x) + e( y) of arrows of 5; 
- composition of arrows is matrix composition; 
- 2-cells are defined pointwise. 

Matr(5) enjoys the following remarkable properties: 
(a) Matr(5) is semiadditive; 
(b) if %+ is semiadditive, then 9+ 7 Matr( W) and thus the construction of 
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Ma&( - ) is idempotent (see [5]); 
(c) if IB is Cartesian, then Matr(5) is Cartesian (define (X, e) @ (Y, e’) as 

(Xx Y, e @ e’), where (e @ e/)(x, u) = e(x) @ e’(u), and similarly for arrows); 
(d) if [B is a ‘bicategory of relations’, then so also is Matr(B). 
As a consequence of property (d), if 8 is a geometric category, then 

Map(Matr(Rel(&))) is the free geometric category having all small indexed disjoint 
and universal sums. By applying Property (d) and Theorem 6.1, we just need to 
check that if 05 is functionally complete, then Matr(B) is such. For details of this 
and related results see [3]. 

Theorem 6.1 applies to bicategories of relations of a Grothendieck topos as 
follows: 

Theorem 6.3. A bicategory E3 is of the form Rel(&) with 6’ a Grothendieck topos iff 
(i) it is a functionally complete ‘bicategory of relations’; 

(ii) it is effective; 
(iii) it has small bicoproducts; 
(iv) it has a small set G of generators (r Cs : X -+ Y iff for all x : U + X, WE G, 

r-xcs-x). ??

The proof relies on the previous theory of relations and the theorem of Giraud. 

Remarks 6.4. (i) Observe that, starting with Giraud’s axioms for a Grothendieck 
topos 6, the distributivity of Rel(g) gives immediately that Q has all coequalizers: 
if f, g : X-, Y is a parallel pair of maps, then the splitting of the free equivalence 
relation r’= 1 J n rn generated by r = g - f O U f - go is the coequalizer of f, g. 

(ii) Another consequence of property (b), Corollary 3.6 and the above remark is 
the following: if 8,s are Grothendieck toposes, then the category Top(G,g) is 
equivalent to the category of monoidal and local union preserving homomorphisms 
Rel(g)+ Rel(G) which is equivalent to the category of sum and tensor preserving 
homomorphisms Rel(g) + Rel(Q. 

Acknowledgment 

We cannot end this paper without mentioning that the idea of using the tensor 
product as primitive in our bicategorical investigations arose in very stimulating 
conversations we had with Bill Lawvere, when he was visiting Sydney in the 
Australian summer of 1982. 

References 

[l] M. Barr, Exact categories and categories of sheaves, Lecture Notes in Mathematics 236 (Springer, 
Berlin, 1971) l-120. 



32 A. Carboni, R.F. C. Walters 

[2] J. Benabou, Introduction to bicategories, Lecture Notes in Mathematics 47 (Springer, Berlin, 1967) 
l-77. 

[3] A. Carboni, An enriched characterization of bicategories of relations of Grothendieck toposes, in 
preparation. 

[4] A. Carboni, S. Kasangian and R. Street, Bicategories of spans and relations, J. Pure Appl. Algebra, 
to appear. 

[5] A. Carboni, S. Kasangian and R.F.C. Walters, Some basic facts about bicategories of modules, 
Dipartimento di Matematica, Milano, 1985. 

[6] R. Cruciani, La teoria delle relazioni nello studio di categoric regolari e di categoric esatte, Riv. 
Mat. Univ. Parma (4) 1 (1975). 

[7] T. Fox, Coalgebras and Cartesian categories, Comm. Algebra 4 (7) (1976) 665-667. 
[8] P.J. Freyd, On canonizing category theory, or, On functorializing model theory, Pamphlet, Univer- 

sity of Pennsylvania, 1974. 
[9] P.T. Johnstone, Topos Theory, London Math. Sot. Monographs 10 (Academic Press, New York, 

1977). 
[lo] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Preprint. 
[ 1 l] G.M. Kelly and M.L. Laplaza, Coherence for compact closed categories, J. Pure Appl. Algebra 19 

(1980) 193-213. 
[12] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. 

Milan0 (1974) 135-166. 
[I31 M. Makkai and G. Reyes, First order categorical logic, Lecture Notes in Mathematics 611 (Springer, 

Berlin, 1977). 
[14] D. Puppe, Korrespondenzen in abelschen Kategorien, Math. Ann. 148 (1962) l-30. 


