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We consider a 2-monad T with rank on a complete and cocomplete 2-category, and write T-Alg 

for the 2-category given the T-algebras, the morphisms preserving the structure to within coherent 

isomorphisms, and the appropriate 2-cells; T-Alg, is the sub-2-category obtained by taking the 

strict morphisms. We show that T-Alg admits pseudo-limits and certain other limits, and that the 

inclusion 2-functor T-Alg,- T-Alg has a left adjoint. We introduce the notion of flexible 
algebra, and use it to prove that T-Alg admits all bicolimits and that the 2-functor T-Alg + S-Alg 

induced by a monad-map S+ T admits a left biadjoint. 

1. Introduction 

1.1. This is the first of a series of articles reporting the work of Kelly and various 

of his colleagues on what we may call two-dimensional universal algebra: the study 

of structures borne not by a set but by a category, or by a family of categories, and 

so on; in the context, however, where the morphisms of primary interest are not the 

strict ones, which preserve the relevant structure on the nose, but those which pre- 

serve it only to within coherent isomorphisms. 
This first article is concerned with the two-dimensional aspect of monad theory. 

Its results will be used in later articles on two-dimensional structures defined by 

finite-limit-theories; and they will be augmented by further articles on presentations 
of monads and related syntactic issues. 

It is now very well known that the theory of monads and their algebras extends 

virtually unchanged from the case of ordinary categories to that of categories en- 

riched over a (symmetric monoidal, locally-small, complete and cocomplete) closed 

category V, see [7,29,32,34]. The cases of interest to us are those where ‘V is the 

Cartesian closed category Cat of small categories, or Gpd of small groupoids. (In 

fact, we do not have to consider the Gpd case separately; a Cat-category is the same 

thing as a (locally small) 2-category, and a Gpd-category is just such a 2-category 

in which every 2-cell is invertible.) 
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Thus we have at hand the results of Cat-enriched monad theory; but this theory, 

as a special case of the Venriched one, knows of no morphisms but the strict ones. 

What we are calling the two-dimensional theory goes beyond the Cat-enriched one 

precisely in studying the non-strict morphisms which, when V is Cat or Gpd, are 

usually those of practical interest. There is, for example, a 2-monad Ton Cat whose 

algebras are (small) categories with (assigned) finite limits; the morphisms of interest 

between these algebras are those functors that preserve finite limits, in the usual 

sense of this phrase - and not the strict morphisms, that take the assigned limits 

on the nose to the assigned limits of the codomain. 

It is characteristic of our treatment (throughout the series) that we consider the 

strict along with the non-strict. At one level this enables us, by comparing strict and 

non-strict morphisms via adjoint 2-functors, to deduce two-dimensional results easily 

from the simple Cat-enriched results; here the strict morphisms, however irrelevant 

they may be in practice, play an essential ancillary role in the proofs of the theorems. 

At another level, it allows us (in later articles) to prove coherence results, to the 

effect that something non-strict may be replaced by an equivalent something that 

is strict. 
We mention here just a few examples of 2-monads, to give the reader some notion 

of our scope, without making the introduction too long; we discuss these and other 

examples more fully in the final section. As we said above, categories with finite 

limits are the algebras for a 2-monad Ton Cat. So are monoidal categories; these 

examples differ in that the structure is unique to within isomorphism (if it exists) 

in the first case, but not in the second. Symmetric monoidal closed categories are 

the algebras for a 2-monad Ton the 2-category Cat, of small categories, functors, 

and natural isomorphisms; it is not possible to extend this T to a 2-monad on the 

2-category Cat - the enrichment here is really over Gpd. Similarly, elementary 

toposes are the algebras for a 2-monad on Cat,, the algebra-morphisms being the 

logical maps. The structure given by two symmetric monoidal closed categories and 

a symmetric monoidal functor between them is an algebra for a 2-monad on Cat:. 

If Cat, denotes the full sub-2-category of Cat given by the finitely-presentable cate- 

gories, there is a 2-monad on the functor-2-category [Cat,, Cat] whose algebras are 

the finitary (that is, filtered-colimit-preserving) 2-monads on Cat. For a small 

2-category 9, the objects of the functor-2-category [P, Cat] are the algebras for a 

2-monad on Catx, where X is the set of objects of 8. 

1.2. For such general 2-categorical notions as are not explained below, see [28]. We 

consider a 2-monad Ton a 2-category .YL. Here T is to be a strict 2-monad; that is, 

a -Y-monad where ‘V= Cat. So the unit i: 1 + T and the multiplication m : T2 + T 

are 2-natural transformations which satisfy on the nose the usual axioms of associa- 

tivity and two-sided identity. We re-emphasize that there is no need to consider 

separately the case V= Gpd; a Gpd-monad on a Gpd-category Yl is just a 2-monad 

T, on X seen as a 2-category. 

Throughout this article we take the notion of T-algebra, too, in the strict sense: 
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a T-algebra (Aa), or A for short, is an object A of LX together with an action 
a : TA -+ A; that is, an arrow in X satisfying on the nose the usual associativity and 

unit axioms. This is not to deny the importance of the pseudo-T-algebras, where the 

action satisfies the axioms only to within coherent isomorphisms; we shall study 

these in a later article, using the results of the present article to do so, and showing 

that (for reasonable X and T) a pseudo-T-algebra is just a (strict) T-algebra for 

another 2-monad T’. 

Where we depart from strictness is in the notion of morphism of algebras. If (A, a) 
and (B, b) are T-algebras, a lax morphism f: A -+ B of T-algebras is a pair (J;?) 

where f: A + B is an arrow in X and f is a 2-cell 

V 
TA - TB 

A------+B 
f 

satisfying the ‘coherence axioms’ 

T*f 
T=A - T=B 

T*f 
T=A - T2B 

TA * TB 

“I Tf liB 
TA ____f TB 

aI 43 lb 

A 
f 

,B 

= identity 

(1.1) 

Ta u T3 Tb 

I Tf -1 
= TA . TB (1.2) 

(1.3) 

The sense of the 2-cell f is purely conventional; reversing it gives the notion of a 

cofax morphism (Jf) - which is just a lax morphism of algebras for the 2-monad 
Tco on Xc”. We call f = (f, f) a morphism of T-algebras when f is invertible; and 

a strict morphism when f is the identity - in which case we often write f for f. 
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These various kinds of morphism were described in [28], but with a different ter- 

minology; there lax morphisms, morphisms, and strict morphisms were respectively 

called morphisms, strong morphisms, and strict morphisms - which, when T- 

algebras are monoidal categories, agrees with the nomenclature of [lo] for monoidal 

functors (and would agree with the nomenclature of [2] for maps of bicategories if 

strong morphism were replaced by homomorphism). Another systematic ter- 

minology, which takes the strict things as the norm, is much used in related contexts, 

some of which - morphisms of 2-monads, for example - are special cases of our 

present context; had we adopted it here, our lax morphisms, morphisms, and strict 

morphisms would have been called, respectively, lax morphisms, pseudo-morphisms, 

and morphisms. Our present terminology seems best suited to the two-dimensional 

theory. 

For lax morphismsf, g : A + B of T-algebras, we define a 2-cell (Y : f + g as a 2-cell 

a : f -+ g in Yl satisfying 

Tf 

zz 

AvB 

TA&TB 

aj A.b 

A UB 

g 

(1.4) 

With the evident laws of composition, we have a 2-category T-Alg, of T-algebras, 

lax morphisms, and 2-cells; restricting to morphisms or to strict morphisms, without 

changing the notion of 2-cell, gives the sub-2-categories T-Alg and T-Alg,; thus the 

non-full inclusions 

T-Alg, -+ T-Alg + T-Alg, (1.9 

are locally fully faithful - in the sense that, for instance, the functor T-Alg,(A, B) + 
T-Alg,(A, B) is fully faithful. Note that T-Alg, coincides with T-Alg when X is only 

a Gpd-category, and that all algebra-2-cells are then invertible. There is an evident 

forgetful 2-functor U, : T-Alg, +YL, restricting to U: T-Alg +X and U, : T-Alg, +.X. 

It is of course T-Alg, that is the Eilenberg-Moore 2-category .YL’ in the sense of 

Cat-enriched monad theory; so that the 2-functor Us has a left adjoint F, with 

T= U,F,. 

1.3. We now outline our main results. We assume familiarity with the article [23] 

on 2-categorical limit notions, written as a preliminary to the present series. Note 

that, in all the examples given in the final paragraph of Subsection 1.1 above, the 

2-category YiC bearing the 2-monad T is complete and cocomplete; that Cat, is so 

follows from [23, Proposition 3.11. Since our most central results require the co- 

completeness of x and some completeness, we may as well suppose from the outset 
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that X is complete and cocomplete, which greatly simplifies some proofs; we note 

in an occasional aside places where less would suffice. 

First, it is well known from the theory of %/-enriched monads that the %-category 

T-Alg, is complete when X is so, (indexed) limits being formed as in X and given 

the evident algebra-structure. The %-category T-Alg, however, is rarely complete; it 

is true that products and cotensor products in T-Alg, are also such in T-Alg, but 

T-Alg lacks equalizers in general. For instance, the 2-category Lex of small finitely- 

complete categories, left-exact functors, and natural transformations is (see Sub- 

section 6.4 below) T-Alg for a finitary 2-monad Ton Cat. If 1 is the unit category, 

if Z is the category with objects 0 and 1 and mutually-inverse isomorphisms O-+ 1 

and 1 + 0, and if 0,l : 1 --f Z are the functors naming the two objects of I, there is 

no left-exact f with Of = lf, since no object of Lex is empty. We show in Section 

2 that T-Alg does, nevertheless, admit a large class of (indexed) limits, including all 

pseudo-limits and all lax limits. We show further that these have a striking and 

important property, which in the case of conical pseudo-limits reduces to the fact 

that the generators of the ‘pseudo-limit-cone’ are strict morphisms of algebras; we 

make essential use of this in Section 4. Observe that, since T-Alg admits all pseudo- 

limits, it a fortiori admits all bilimits by [23, Proposition 6.11. 

Recall that T is said to have a rank if it preserves a-filtered colimits for some 

regular cardinal cr; in most practical examples, T preserves all filtered colimits, and 

thus has rank o, or equivalently is finitary. In Section 3 we show that the full inclu- 

sion 2-functor T-Alg, + T/X into the comma-2-category has a left adjoint (in the 

usual strict sense of Cat-enriched category theory) when, as we henceforth suppose, 

T has a rank; this is just an extension to 2-categories of a result of Kelly [20] for 

ordinary categories. We deduce that T-Alg, is cocomplete, and that the 2-functor 

T-Alg, + S-Alg, induced by a strict map S --t T of 2-monads admits a left adjoint. 

We further deduce that the inclusion 2-functors T-Alg, + T-Alg and T-Alg, + T-Alg, 

admit left adjoints. 
Since the left adjoint ( )’ : T-Alg ---) T-Alg, plays an essential role in deducing 

properties of T-Alg from the related properties of T-Alg,, we examine it more 

closely in Section 4. Using the results of Section 2 on pseudo-limits, we show that 

the unit p:A +A’ and the counit q:A’ +A of this adjunction constitute an equi- 

valence in T-Alg, and we distinguish the class of flexible T-algebras A: those for 

which q is a retraction (and then necessarily an equivalence) in T-Alg, itself. This 

notion of flexibility will play an important role, not only in Section 5 below, but 

also in subsequent articles; when T-Alg, is [Y, Cat] as in the last example of Sub- 

section 1.1, we get the concept of flexible indexing type in connexion with indexed 

limits, which we shall explore further in [5]; in the penultimate example of Sub- 

section 1.1, we get the concept of a flexible finitary %-monad on Cat - we shall see 

in a later article that the 2-monad whose algebras are monoidal categories is flexible, 

while that whose algebras are strict monoidal categories is not. 

In Section 5 we show that, if G is a 2-functor with domain T-Alg whose composite 

with the inclusion J: T-Alg, + T-Alg has a left adjoint H, then the value of H at 
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any object is a flexible algebra; from which we conclude that G has JH as a left bi- 
adjoint (see [23, Section 61). We use this to deduce, from the related properties of 

T-Alg, given in Section 3, that T-Alg admits all bicolimits when T has a rank, and 

that the 2-functor T-Alg + S-Alg induced by a strict map S + T of 2-monads admits 

a left biadjoint when both T and S have a rank. Note that T-Alg does not admit 

pseudo-colimits in general: a pseudo-initial-object is the same thing as an initial 

object, and Lex admits no initial object, the left-exact functors A +I constant at 

0 and at 1 being different for every A. 

The final Section 6 is given over to a discussion of particular 2-monads, their 

algebras, and the morphisms of these, and includes a justification of some of our 

observations above on examples. 

2. On limits in T-Alg 

We observed in Subsection 1.3 that T-Alg is rarely complete, lacking equalizers 

in general; yet it does admit a large class of limits. For these we use the nomenclature 

and notation of [23]. We make the blanket assumption for this section that X is 
complete, although for many of the results less suffices. 

Proposition 2.1. T-Alg admits products, and these are preserved by U: T-Alg -+ YZ. 

The product-projections are strict morphisms of algebras, and the product in T-Alg 

is also the product in T-Alg,. 

Proof. Given a family (A;, a;) of algebras for i E I, let (pi : A -+ A;) be the product 

of the Ai in Yl, and write a : TA -+ A for the unique map with pia = ai. Tp;. Then 

a is an action, the necessary axioms following from those for the a, since the pi are 

jointly monomorphic; and each pi is a strict morphism of algebras. To see that 

(p, : A +A;) is the product in T-Alg, consider a family qi= (qr, 4;) : D + Ai of 

algebra-morphisms. There is a unique h : D+A in X satisfying pih = qi. We have 

the 2-cells 

pia. Th=ai. Tpi. Th=ai* Tqi~qid=p,hd, 
, 

and so, by the two-dimensional aspect of the universal property of the product in 

YZ, there is a unique 2-cell h : a. Th ---) hd satisfying pjfi = 4;. The axioms (1.2) and 

(1.3) for (h, fi) follow easily from those for the (qi, qi) and from the naturality of 

m and i, using the uniqueness clause in the two-dimensional universal property. 

Thus (h, h) is the unique algebra-morphism h : D + A satisfying p;h = qi. It remains 

to verify the two-dimensional aspect of the universal property in T-Alg. Let 

pi :pih +pik be 2-cells in T-Alg. At the level of X, there is a unique 2-cell cr : h + k 
with pia=Pi; and the axiom (1.4) for (Y follows easily from that for the pi, again 

using the uniqueness in the two-dimensional universal property. For the last asser- 

tion of the proposition, we have only to observe that, when each qi above is strict, 

so is h. 0 
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Proposition 2.2. Everyparallelpairf,g : B + C in T-Alg admits an inserterp : A + B, 
,I : fp +gp, preserved by U: T-Alg +X. Moreover, p is a strict morphism of 
algebras; and any algebra-morphism h : D--f A is strict if the composite ph is strict. 
Exactly the same is true with ‘iso-inserter’ in place of ‘inserter’. 

Proof. We give the proof for inserters, that for iso-inserters being essentially iden- 

tical. Let p : A + B and 2 : fp + gp be the inserter off and g in ~6. We have the map 

b. Tp : TA + B and the 2-cell 

fb.Tp f c.Tf.Tp x c.Tg.Tp 3 gb.Tp; (2.1) 

thus, by the one-dimensional universal property in X, there is a unique a : TA + A 
for which pa= 6. Tp and Aa is the composite (2.1). That is to say, we have 

TA 

a 

I 

A 

TP 

/ 

P 

/ 

\ P 

TB 

b 

B 

B 

Tf 

\ 

Uf 

f 

\ 

/ g 

TC 

! c = 

C 

TAy:2‘--i-_~~ 
a kTB/;6 

i ! 

c 

A.‘p,!b>c 

B 

(2.2) 

From (2.2), the axioms (1.2) for f and for g, and the 2-naturality of m, we get 

pa. mA =pa’ Ta and Aa. mA =2a’ Ta; whence a’ mA =a. Ta by the uniqueness 

clause in the one-dimensional universal property. Similarly we have a f iA = 1; so 

that a is an action and A = (A, a) is an algebra. Clearly p : A + B is a strict algebra- 

morphism and - comparing (2.2) with (1.4) - A is an algebra-a-cell A : fp+gp. To 

see that (p,L) is the inserter off and g in T-Alg, consider an algebra-morphism 

q : D+ B and an algebra-2-cell P : fq -gq; the axiom (1.4) for Jo is 

TD 
I u4 

dl 
4 ?--/--’ 

\ 4 

(2.3) 

By the one-dimensional universal property in X, there is a unique h : D + A satisfy- 

ing ph = q and Ah =,u. We have the 2-cell 

pa. Th=b. Tp. Th=b. TqTqd=phd; (2.4) 
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it satisfies (2.3) which, using ph = q and Ah =p, may be written as 

(Ahd)(fq)(f. Tp. Th) = (gq)(ge Tp. Th)(c. T/l. Th), 

or equivalently, since (2.1) is Ia, as (Ahd)(fq)=(gq)(&z. Th). Hence, by the 

two-dimensional aspect of the universal property in rt, there is a unique 2-cell 

fi: a - Th --+ hd with pfi= 4. The axioms (1.2) and (1.3) for (h, h) follow from those 

for (q,(r) using the uniqueness clause in the two-dimensional universal property. 

Thus (h, h) is the unique algebra-morphism h : D + A satisfying ph = q and Ah = p. 
Note that h is strict if q is strict, giving the penultimate assertion of the proposition. 

Finally we need the two-dimensional aspect of the universal property in T-Alg. 
Suppose then that we have algebra-morphisms h, k : D --t A and an algebra-2-cell 

/I :ph +pk satisfying (nk)(fP) = (g/3)@h). By the two-dimensional universal property 

in X, there is a unique 2-cell cy : h + k with per = /3; it is in fact an algebra-2-cell, (1.4) 

for a following by the uniqueness clause from (1.4) for p_ 0 

Proposition 2.3. Every pair cl, p : f + g : B + C of parallel 2-cells in T-Alg admits an 
equifier p : A + B, preserved by U : T-Alg --+X. Moreover, p is a strict morphism of 
algebras, and any algebra-morphism h : D + A is strict if the composite ph is strict. 

Proof. Let p: A + B be the equifier of a and /I in X. Writing (1.4) for (Y as 

(ab)f= g(c. Tcr) and composing with the arrow Tp gives (ab. Tp)(f. Tp) = 
(2. Tp)(c. Ta. Tp). Similarly (pb. Tp)(f‘. Tp) = (g. Tp)(c. Tp. Tp). But Ta. Tp = 
Tfi. Tp since cwp=pp, so that (crb. Tp)(fs Tp)= (/lb. Tp)(f. Tp). Because f and 

hence f. Tp is invertible, we have ab. Tp =pb. Tp. By the one-dimensional uni- 

versal property in Yl, therefore, there is a unique a : TA + A with pa = b. Tp. More- 

over, a is an action, the necessary axioms following from those for b since p is 

monomorphic. Thus A = (A, a) is an algebra, and p : A -+ B is a strict algebra-mor- 

phism with clp=pp. To see that p is the equifier of a and /? in T-Alg, consider an 

algebra-morphism q : D + B with c.rq = pq. By the one-dimensional universal prop- 

erty in X, there is a unique h : D+ A with ph = q. Just as in (2.4) above, we have 

the 2-cell 9 : pa. Th +phd; by the two-dimensional universal property in X, there 

is a unique 2-cell h : a. Th + hd with ph = 4. The axioms (1.2) and (1.3) for (h, fi) 

follow from those for (q,Q) using the uniqueness clause in the two-dimensional 

universal property. Thus (h, h) is the unique algebra-morphism h : D+ A with 

ph = q. Note that h is strict if q is strict, giving the final assertion of the proposition. 

Finally we need the two-dimensional aspect of the universal property in T-Alg. 

Suppose then that we have algebra-morphisms h, k: D+ A and an algebra-2-cell 

,u : ph -‘pk. By the two-dimensional universal property in X, there is a unique 2-cell 

/i : h + k with pL =p; it is in fact an algebra-2-cell, (1.4) for /I following by the 

uniqueness clause from (1.4) for p. 0 

Similarly we could construct inverters in T-Alg directly from inverters in X. 

Since, however, we are supposing X to be complete, it is simpler to infer the 
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existence of further limits in T-Alg by combining the three propositions above with 

the results of [23]. 

Proposition 2.4. Every 2-cell a : f -+ g : B + C in T-Alg admits an inverter p : A + B, 
preserved by U : T-Alg + YL. Moreover, p is a strict morphism of algebras, and any 
algebra-morphism h : D+ A is strict if ph is strict. 

Proof. Since T-Alg admits inserters and equifiers by Propositions 2.2 and 2.3, it 

admits inverters by [23, Proposition 4.21. For the final assertion we must look at 

the construction of the inverter in the proof in [23]: the inverter p appears there as 

uuw where (u, /3) is an inserter and u and w are equifiers; and so the assertion follows 

from Propositions 2.2 and 2.3. 0 

Proposition 2.5. T-Alg admits cotensor products {X, B}, and these are pre- 
served by U: T-Alg +YL. The unit < :X + T-Alg({ X, B}, B) takes its values in 
T-Alg,({X, B}, B). Moreover, an algebra-morphism h : D- {X, B} is strict if the 
composite T-Alg(h, l)< : X+ T-Alg(D, B) takes its values in T-Alg,(D, B) (that is, if 
&h is strict for each object x of X) - which is equally to say that {X, B} is also the 
cotensor product in T-Alg, . 

Proof. Since T-Alg admits products, inserters, and equifiers by Propositions 2.1- 

2.3, it admits cotensor products by [23, Proposition 4.41. In the proof of this last, 

{,: {X, B} --f B is exhibited (changing some letters) as pxuu, where u and u are 

equifiers and px is the x-component of a map p : C-t BobX forming part of an in- 

serter (p, ,I). The remaining assertions of the proposition now follow from Proposi- 

tions 2.1-2.3. 0 

The most important result for our applications is the ‘pseudo’ case of the 

following: 

Theorem 2.6. For any F: W + Cat and G : 9 --t T-Alg with 9 small, T-Alg admits 
the lax limit {F, G},, and this is preserved by U: T-Alg + LYZ. The lax natural trans- 
formation C: F-+ T-Alg({F, G},, G-) forming the unit of the limit has the property 
that, for each object P of 9, the functor ip : FP+ T-Alg((F, G},, GP) takes its 
values in T-Alg,({F, G},, GP). Moreover an algebra-morphism h : D + {F, G}, is 
strict if, for each P, the composite T-Alg(h, l)cp : FP+ T-Al&D, GP) takes its 
values in T-Alg,(D, GP). Exactly the same is true when lax limits are replaced by 
pseudo-limits ( F, G ) D . 

Proof. We give the proof for lax limits, that for pseudo-limits being essentially iden- 

tical. Given Propositions 2.1-2.3 and 2.5 above, the existence of the limit follows 

from [23, Proposition 5.11. In the proof of this last, cp: FP+ T-Alg({F, G},, GP) is 

exhibited (changing some letters) as the image under adjunction of ppuv : {F, G}, + 
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{FP, GP}, where {FP, GP} is the cotensor product in T-Alg, while u and v are 

equifiers and p,, is the component of a map p : C + np {FP, GP} forming part of 

an inserter (p, A). By Propositions 2.1-2.3, an algebra-morphism h : D + {F, G}, is 

strict if and only if p,uvh : D -+ {FP, GP} is strict for each P. By Proposition 2.5, 

this is so if and only if T-Alg(p,uvh, l)rp : FP+ T-Alg(D, GP) takes its values in 

T-Alg,(D, GP), where & is the unit for the cotensor product (FP, GP}. The re- 

maining assertions of the theorem now follow from the facts that c&,, as the image 

under adjunction of ppuv, is just T-Alg(p,uv, l)tp, while T-Alg(p,uvh, l)L$ is 

T-Alg(h, l)cp. q 

Remark 2.7. The content of this theorem is easier to grasp in the particular case 

of conical pseudo-limits. Any G :9 + T-Alg with W small has a pseudo-limit 

psd lim G, preserved by U : T-Alg -+ LYZ. Its unit is a pseudo-cone [ over G with vertex 

psd lim G, having components cp : psd lim G + GP for PE 9 and components 

& : Gy, . cp= ce for 9 : P+ Q in 9. The components ip are strict algebra-mor- 

phisms, and any algebra-morphism h : D + psd lim G is strict if each iph is strict. 

We apply this in Section 4 below when 9 is the arrow-category 2, of the form 0 --f 1; 

so that we are dealing (see [23]) with the pseudo-limit of a single algebra-morphism 

f: B -+ C. This is the universal diagram in T-Alg of the form 

(2.5) 

with ,I invertible. What the theorem asserts here, besides the existence of the limit 

and its preservation by U, is that the ‘generators’ u and v of the pseudo-cone are 

strict algebra-morphisms, and that any algebra-morphism h : D--t A is strict if uh 

and vh are strict. 

Remark 2.8. Although we are supposing CC complete because this suffices for our 

applications, it is clear from the proofs of Propositions 2.1-2.3 that the existence 

in T-Alg of I-fold products needs only the existence of such products ins, and simi- 

larly for inserters and equifiers. Had we given the corresponding direct proofs of 

Propositions 2.4 and 2.5 and Theorem 2.6, instead of deducing them from Proposi- 

tions 2.1-2.3 and the results of [23], we should see that the same is true of inverters, 

of any given cotensor product {X, B}, and of any given lax- or pseudo-limit. It 

follows that, when & is finitely complete in the sense of [23, Section 31, T-Alg 

admits finite products, inserters, iso-inserters, equifiers, inverters, those cotensor 

products {X, B} where the category X is finitely presentable, and those {F, G}, and 

{F, G}p for which ob 9 is finite and each category 9(P, Q) and each category FP 

is finitely presentable - this last by an analysis of the proof of [23, Proposition 5.11. 
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Remark 2.9. Our interest in T-Alg, is very much secondary, although the left ad- 

joint of Section 3 below to the inclusion T-Alg, --f T-Alg,, in the special case of the 

last example of Subsection 1.1 where T-Alg, = [9’, Cat], is of importance (see [5]) in 

the study of lax limits and even of pseudo-limits. What we observe here is that 

T-Alg, is, even in comparison with the non-complete T-Alg, very poorly endowed 

with limits. It does admit products, which are those in T-Alg,, by the same proof 

as that of Proposition 2.1. It also admits cotensor products, which are those in 

T-Alg, - not by our present proof of Proposition 2.5, but by a direct one. Finally, 

it admits (again by a direct proof) the lax limit of a single morphism. Now, for 

counter-examples, let T be the 2-monad on Cat whose algebras are (small) categories 

with initial objects. By Subsection 6.5 below, a lax morphism f: B + C of algebras 

may be identified with an arbitrary functor f: B + C between the underlying cate- 

gories. The functors 1,O : 1 ---* 2 (that is, the names of the objects 1 and 0 of 2 - the 

context makes it clear that 1 : 1 --f 2 does not denote an identity functor) admit no 

inserter in T-Alg,, since no T-algebra is empty. The unique 2-cell 0 + 1 : 1 -+ 2 ad- 

mits no inverter. Consider the categories B and C with initial object 0, given respec- 

tively by 
CY 

O----+X_;Y, u+O+u; 
B 

the 2-cells a: /3 : x + y : 1 + B admit no equifier, and the diagram given by the parallel 

pair U, u : 1 + C admits neither a conical pseudo-limit nor a conical lax limit. 

3. The left adjoints of T-Alg, -+ T/S, T-Alg, -+ T-Alg, and T-Alg, + T-Alg, 

To exhibit a left adjoint H of a 2-functor G : .YZ+ 9, we must provide a unit 

1 + GH and show that it induces an isomorphism X (HB,A) =S?(B, GA) of cate- 
gories; that is, we must verify not only the usual one-dimensional universal property 

but a two-dimensional one as well. If X admits the cotensor products {2,A}, how- 

ever, we can replace this latter verification by the much simpler one that G preserves 

these cotensor products. Write X0 for the underlying ordinary category of a 2-cate- 

gory X, obtained by forgetting the 2-cells, and write G, :X0 +g2, for the under- 

lying functor of the 2-functor G :X+ g. The following is essentially an adaptation 

to the case W=Cat of [21, Theorem 4.851, but we give a direct proof. 

Proposition 3.1. LetXadmitcotensorproductsoftheform {2,A} andletG:X-+_* 
preserve them. Then G admits a left adjoint if G, :X0 +gO does so. 

Proof. Let qB: B- GHB be the unit of the adjunction H, -I G,, so that every 

p:BjGAisGf.rlBforauniquef:HB~A.Considernowa2-cell~:p~q:B-t 

GA where p = Gf. VB and q = Gg . qB; we are to show that Q = Ga . rlB for a unique 

a:f-+g.LetC,withitsunith:u-+u: C+ A, be the cotensor product (2, A}; since 
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this is preserved by G, there is a unique r: B -+GC such that Gu.r=p, Gv.r=q, 

and GA. r = Q. There is a unique h : HB + C with Gh . UB = r. Because Gu . Gh . VB = 

Gu . r =p, we have uh =f; similarly vh = g. The 2-cell Ah : f = uh + vh = g satisfies 

G(Ah) . VB = GA. Gh . VB = Gl.. r = Q, as required. It remains to show uniqueness; 

let a : f + g be any 2-cell such that Ga. yB = Q. There is a unique k : HB + C satis- 

fying uk = f, vk = g, and hk = a. Now GM. Gk. rlB = Gf. yB =p, and similarly 

GV . Gk * r/B = q; while GA . Gk . JIB = Ga . VB = Q. By the uniqueness clause for the 

cotensor product GC, we have Gk. qB=r; this gives k= h, so that a=Ah. 0 

Remark 3.2. The observation in [23, Section 31, that the two-dimensional universal 

property of a putative limit in a 2-category X follows from the one-dimensional one 

if X admits tensor products of the form 2 *A, is a special case of the dual of the 

above - or more precisely of its ‘representation’ rather than its ‘adjunction’ form. 

In the further results of this section, no completeness of N, as distinct from its 

cocompleteness, is really necessary; but because N is complete in all of our ex- 

amples, we add such unnecessary hypotheses to shorten our arguments by using 

Proposition 3.1. 

We now consider, for any 2-category X (on which we make no blanket hypotheses 

for the moment), and for any endo-2-functor T of X, the comma-2-category T/X. 

An object of T/X is a triple (A, a,X) where A and X are objects of Tt and 

a : TA +X; a morphism (A, a, X) + (B, b, Y) is a pair (f: A + B, p : X+ Y) such that 

pa = b. Tf; and a 2-cell (J; p) + (g, q) is a pair of 2-cells (Q : f + g, Q : p + q) such that 

@a = 6. Ta. In other words, the horn-category in T/Yl is given by the following pull- 

back in Cat: 

I X(a, 1) 
(3.1) 

yl=/t(A,B) -Jo ~(TA, W x X(TA, Y) 

We leave to the reader the very simple proof of 

Proposition 3.3. Given an object (C, c, Z) of T/S, let 2 : u + v : B + C and ,D : s + 

t : Y + Z be the cotensor products { 2, C} and { 2, Z} in X. Write b : TB + Y for the 

unique map satisfying sb = c. Tu, tb = c. TV, and pub = c. T,l. Then (1, ,u) : (u, s) -+ 
(v, t) : (B, 6, Y) + (C, c, Z) is the cotensor product (2, (C, c, Z)} in T/X. 0 

Proposition 3.4. The 2-category T/X is cocornplete if Yl is cocomplete and admits 

the cotensor products (2, C} . 

Proof. Let F: 9’Op + Cat be an indexing type with 9 small. To give a 2-functor 
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G : W --f T/Z is clearly to give 2-functors M, N: P -tX and a 2-natural a : TM+ N; 

then GP = (MP, UP, NP), and similarly for morphisms and 2-cells. Consider what it 

is to give a 2-natural y : F+ (T/x)(G-, (B, 6, Y)); in view of the pullback (3.1) it is 

to give 2-natural transformations Q : F-+Z(M-, B) and o : F-*Z(N-, Y) rendering 

commutative 
0 

F * Z(N-, Y) 

e 

i 
(3.2) 

x(M-,B) - T Z(TM-, TB) s x(TM-, Y) 

To give Q and o is equally to give (using the notation of [23] for colimits) maps 

f: F*M+ B and q: F*N+ Y in .YL; and the translation of (3.2) is 

F 
F*TM - T(FaM) 2 TB 

(3.3) 

F*N 4 >Y 

where T is the canonical comparison map. Form the pushout 

i: 
F*TM - T(F*M) 

F*N 
C 

tX 

in Z; to give f and q as above satisfying (3.3) is to give f: F*M-+ B and p :X+ Y 

satisfying pa = be Tf, which is to give a map (f, p) : (F*M, a, X) + (B, b, Y) in T/Z. 

So (F*M, a, X) is the colimit F* G in T/s, as far as the one-dimensional universal 

property goes; that it has the two-dimensional universal property as well follows 

from Remark 3.2 and Proposition 3.3. 0 

Consider now any 2-natural 8 : S -+ T between endo-2-functors of YL There is an 

evident induced 2-functor 8’ : T/s- S/Z sending (A, a, X) to (A, a. &4,X). 

Proposition 3.5. If LYZ admits pushouts and the cotensor products (2, C}, the 

2-functor 0’ : T/Z+ S/YZ induced by 0 : S + T has a left adjoint. 

Proof. It was observed in 120, Section 14.11 that 8’ : (T/Z), = TO /x0 -+ SO/Z0 = 

(S/x), has a left adjoint sending (A, b, Y) E S/Z to (A, a, X) E T/& where a and X 

are defined by the pushout 
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BA 
SA - TA 

b a 

Y -x, 
d 

the unit of the adjunction being (1, d) : (A, b, Y) + (A, a. t9A, X). Since T/Z has the 

cotensor products (2, (C, c, Z)} by Proposition 3.3 and 8’ clearly preserves these, 

the result follows from Proposition 3.1. 0 

We now return to the situation where T= (T, i, m) is a 2-monad on X. Let us iden- 
tify a T-algebra A = (A, a) with the object (A, a, A) of T/Z. 

Lemma 3.6. Let (A, a, X) be a general object of T/.x and let B = (B, b) = (B, b, B) be 
a T-algebra. If (f, p) : (A, a, X) --t (B, b, B) is a morphism in T/Z we have f =pa . iA; 
if (CL, Q) : (f, p) + (g, q) : (A, a, X) -+ (B, b, B) is a 2-cell, we have CL = ea. iA. The full 
sub-2-category of T/Yl determined by the T-algebras is precisely T-Alg,. 

Proof. By the naturality of i, we have Tf. iA = iB .f; since b. Tf =pa and b. iB = 1, 
we have f =pa. iA. If (A, a, X) too is a T-algebra (A, a,A), this gives f =p since then 

a. iA = 1; thus f is a strict morphism of T-algebras. The arguments at the level of 

2-cells are identical, using the 2-naturality of i. 0 

Theorem 3.1. When Z is complete and cocomplete and T has a rank, the full inclu- 
sion 2-functor T-Alg,-+ T/Z has a left adjoint. 

Proof. Consider a T-algebra C= (C, c). If the cotensor product (2, C} in X is 

i : u + u : B+ C, the cotensor product (2, C} in T-Alg, has by Proposition 2.5 

the same form (since it is the cotensor product in T-Alg, which is preserved by 

U: T-Alg -*LX, and for which u and u are strict algebra-morphisms). The action b 
of B must therefore be the unique b : TB -+B for which ub=c.Tu, ub=c.Tv, and 

hb = c. Ta. It follows from Proposition 3.3 that the inclusion T-Alg, + T/x pre- 

serves the cotensor products (2, C}. The underlying category (T-Alg,), is just the 

classical Eilenberg-Moore category T,-Alg for the monad TO on X0. Of course (see 

[23, Section 31) .X0 is cocomplete when X is so; and to say that T has rank (x is the 

same thing as to say that TO has rank o. Accordingly, the full inclusion (T-Alg,), = 

T,-Alg --+ TO/x0 = (T/Z), has a left adjoint by [20, Theorem 25.21. The result now 

follows from Proposition 3.1. q 

From Proposition 3.4 and Theorem 3.7 we conclude (see [23, Section 31) that: 

Theorem 3.8. When Z is complete and cocomplete and T has a rank, T-Alg, is co- 
complete. 0 
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Now consider a second 2-monad S = (S, j, n) on X and a strict map 0 : S + T of 

2-monads; for this notion, see [28, Section 3.21. The 2-functor 8’: T/J&-S/~ above 

clearly restricts to a 2-functor 0*: T-Alg, + S-Alg, sending (A, a) to (A, a. &I). Of 

course, 0* commutes with the forgetful 2-functors to Xcl; and it is well known (see 

[28, Section 3.61) that any 2-functor T-Alg, --f S-Alg, commuting with the forgetful 

2-functors is 0* for a unique such 0. 

Theorem 3.9. Let yl be complete and cocomplete, let 6’ : S + T be a strict map of 
2-monads, and let T have a rank. Then the 2-functor Q * : T-Alg, + S-Alg, has a left 
adjoin t. 

Proof. By Proposition 3.5 and Theorem 3.7, the composite of the inclusion 

T-Alg,- T/z and 8’: T/s- S/x has a left adjoint. Since this composite is 

equally the composite of 8*: T-Alg, + S-Alg, and the inclusion S-Alg, + S/X, and 

since this latter inclusion is a full one, the result follows. 0 

We saw in Lemma 3.6 that a morphism (f,p) : (A, a,X) + (B, 6, B) in T/rt into 

a T-algebra is entirely determined by the map p : X-+ B in X, as f must be pa. iA. 
Clearly 

Lemma 3.10. If B= (B, b) is a T-algebra, a mapp : X+ B in x corresponds as above 
to a morphism (A, a, X) + (B, 6, B) in T/.% if and only if pa = b. Tp . Ta . TiA. 0 

Lemma 3.11. Consider a T-algebra B = (B, b) and an object C of x. Any map 
q : C + B in s determines a map k : TC + B by k = b. Tq. Here q is fully determined 
by k, since the naturality of i and be iB = 1 give q = k. iC. A given k : TC-+ B is of 
the form 6. Tq if and only if 6. Tk . TIC = k. 0 

Proposition 3.12. Let .% be cocomplete and let A = (A, a) be a T-algebra. We can 
find an object (C, c, Z) of T/.% such that, for any T-algebra B = (B, b), there is a 
bijection, natural in the T-algebra B, between morphisms A + B of T-algebras and 
morphisms (C, c, Z) + (B, b, B) in T/rt. There is a corresponding result with mor- 
phisms of T-algebras replaced by lax morphisms. 

Proof. First form the pseudo-colimit 

TA 

a 

A - C’ 
e’ 

(3.4) 

in rt of the arrow a. To give the data (Jt;f> as in (1.1) for an algebra-morphism 
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f :A + B is, by the universal property of (3.4), to give a map q’: C’+ B as in 

“si” = M;:_x 
(3.5) 

A-B 
f 

A - C’- B. 
e’ 4, ’ 

that is to say, we have 

f = q’e’, f = q’A’, (3.6) 

and we must of course require of q’ that q’d’= be Tf, or 

q’d’ = b. Tq' . Te’. (3.7) 

The axiom (1.3) for (f, f) becomes 

q/A’. iA = identity. (3.8) 

Accordingly, let u : C-t C be the co-identifier of A’. iA, and define d, e, ,I by 

TA TA 

A-C A - C’- C; 
e e’ I4 

note that, since ud’. iA = ue'a . iA = ue’ because uA’* iA = id, we have 

d.iA=e. (3.9) 

To give a q’ satisfying (3.8) is to give a map q : C + B, whereupon q’= qu. Now (3.5) 

becomes 

Tf 
TA - TB TA 

(3.10) 

A-B 
f 

A -C’- B, 
e 4 

and (3.7) becomes 

qd=b.Tq.Te. (3.11) 

Thus to give the data (f,f) satisfying (1.3) is to give q : C-B satisfying (3.11). By 

Lemma 3.11, to give q : C--f B is equally to give k : TC + B satisfying 

b.Tk.TiC=k; (3.12) 
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whereupon q = k. iC and k = b e Tq, so that (3.11) becomes 

k.iC.d=k.Te. (3.13) 

So to give the data (J;f) satisfying (1.3) is equally to give k : TC+ B satisfying (3.12) 

and (3.13). 

It remains to satisfy the axiom (1.2) for (f,f). Expressing f and f in terms of k 

using (3.10) and q = k. iC, this axiom becomes the equality of the 2-cells 

T2A 

TA 

A-C?TC,B 
e 

and 

T2A 

Ta ITI, 
Td I\ 

A-Ci,TC,B; 
e 

(3.14) 

(3.15) 

note that we have used (3.12) to reduce the right side of (1.2) to (3.15), and that 

the pentagon in (3.15) commutes by (3.13). 

That the l-cells forming the upper legs of (3.14) and (3.15) are equal, given (3.12) 

and (3.13), is clear from our construction, since they are equal in (1.2). Now, how- 

ever, we cease for the moment to impose (3.12); so there is no guarantee that these 

upper legs are equal. But if they are equal, (3.13) is a consequence; we have only 

to compose each of them with TiA : TA + T2A and use mA . TiA = 1 and (3.9). 

Accordingly we consider the coequalizer u : TC-+ D of iC. d. mA and Td, and the 

coequifier W: D-* Z of the pair of 2-cells obtained from (3.14) and (3.15) on re- 

placing therein k by u. If we write c : TC + Z for wu, to give a map k : TC + B satis- 

fying (3.13) and making (3.14) and (3.15) equal (at the levels of l-cells and of 2-cells) 

is equally to give a map p : Z -+ B; whereupon k = pc. The remaining condition (3.12) 

which we must now impose upon k if it is to correspond to an algebra-morphism 

f = (J;f) : A + B becomes b. Tp. Tc. Tic =pc; which by Lemma 3.10 is exactly the 
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condition for p to correspond to a morphism (C, c, Z) ---f (B, 6, B) in T/X. This com- 

pletes the proof in the ‘morphisms of algebras’ case. The proof in the ‘lax mor- 

phisms’ case differs in only one point: we replace the pseudo-colimit (3.4) by the 

op-lax-colimit in which the 2-cell A’ is not required to be invertible (it is ‘op-lax’ and 

not ‘lax’ because colimits in ,Y[ are limits in ,x’~, and the passage from X to Xop 

reverses l-cells but not 2-cells). 0 

Theorem 3.13. If LYE is complete and cocomplete and T has a rank, the inclusion 
2-functors T-Alg, + T-Alg and T-Alg, + T-Alg, have left adjoints. 

Proof. T-Alg, has cotensor products, and the inclusions above preserve them, by 

Proposition 2.5 and Remark 2.9; by Proposition 3.1, therefore, it suffices to show 

that the inclusion functors (T-Alg,), + (T-Alg). and (T-Alg,), + (T-Alg,), have left 

adjoints. This is so, since we have isomorphisms (T-Alg).(A, B)z (T/X),((C, c, Z), 
(B, b, B)) G (T-Alg,)O ((C, c, Z)‘, B) natural in the T-algebra B, by Proposition 3.12 

and Theorem 3.7 respectively; here ( )” denotes the left adjoint of the latter 

theorem to the inclusion T-Alg, + T/X. Similarly, by the final assertion of Propo- 

sition 3.12, with T-Alg, in place of T-Alg. 0 

Remark 3.14. As we said in Remark 3.2, the theorems of this section remain true 

without any completeness hypothesis on X, so long as it is cocomplete; the proofs, 

which are then longer, go as follows. We omit Propositions 3.1 and 3.3, and verify 

directly the two-dimensional universal properties of the colimit constructed in 

Proposition 3.4 and of the adjoint constructed in Proposition 3.5. Lemma 3.6 stays 

as it is. For Theorem 3.7, one must go back to [20] and trace through the stages 

of the proof of its Theorem 25.2, starting with the first results on algebras for a well- 

pointed endofunctor, and observing that everything carries over to the 2-categorical 

situation. We extend Lemmas 3.10 and 3.11 to include the corresponding results on 

2-cells; and we use the two-dimensional universal property of the colimits in the 

proof of Proposition 3.12 to deduce an isomorphism of categories T-Alg(A, B) G 
(T/X)((C, c, Z), (B, 6, B)). Now Theorem 3.13 follows. 

Remark 3.15. Let 9 be a small 2-category and 9 a cocomplete one. We show in 

Subsection 6.6 below that, if X is the set of objects of 8, there is a finitary 2-monad 

T on the power gX, whose algebras are the 2-functors 9 +g; the strict mor- 

phisms, the morphisms, and the lax morphisms being respectively the 2-natural 

transformations, the pseudo-natural transformations, and the lax natural transfor- 

mations, while the algebra-2-cells are the modifications. Thus here the inclusions 

T-Alg,-+ T-AlgA T-Alg, become [Y”,g] -Psd[.Y,g] + Lax[g,g] in the sense of 

[23, Section 51. Accordingly, by Theorem 3.13 if 9 is also complete, and in particu- 

lar if go= Cat (which is the only case used below), but by Remark 3.14 if .g is only 

cocomplete, we have 
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Theorem 3.16. For a small 2-category 9 and a cocomplete 2-category 9, the inclu- 
sion 2-functors [P, 5? ] + Psd [9, g ] and [.CP, 9 ] + Lax [9,9 ] have left adjoints. 0 

4. Flexibility 

Still supposing that x is complete and cocomplete and that T has a rank, we 

devote this section to a closer examination of the first adjunction of Theorem 3.13. 

Write J: T-Alg, + T-Alg for the locally-fully-faithful inclusion 2-functor; although 

we often suppress J and write A, f, a for JA, JJ; Jcl, we must sometimes refer to it 

to avoid confusion. Write ( )’ : T-Alg + T-Alg, for the 2-functor left adjoint to J 
given by Theorem 3.13, and write rrAB : T-Alg,(A’, B) G T-Alg(A, JB) = T-Alg(A,B) 

for the adjunction-isomorphism. Note carefully the extent of the 2-naturality of 

zAB; it is 2-natural in A for A E T-Alg, but is 2-natural in B only for BE T-Alg,. 

Let the unit and the counit of the adjunction be p : 1 + J( )‘: T-Alg + T-Alg and 

q : ( )‘J+ 1 : T-Alg, -+ T-Alg,, observing that the components qn : A’-+A, unlike 

the components pA : A + A’, are strict morphisms of algebras. In the same vein, PA 

is 2-natural in A for A E T-Alg, while qA is 2-natural in A only for A E T-Alg,. In 

diagram form we have 

PA 
A - A’ 

! I f’ g’ (4.1) 

B - B’ 
PI3 

B’ - B 
48 

where g in the right-hand square is to be strict; there is of course similar commuta- 

tivity for 2-cells f-f* and g + g*. The triangular equations for the unit and the 

counit are 

PA 

A - A’ 
(PA)’ 

A’ - A” 

\I 1 
qA \I 1 qA' 

A A’ 

As in [21, Section 1 .I 11, we have commutativity in 

T-AlgJA’, B) 
XAB 

= ’ T-Alg(A, B) 

\ JA’, B 
/ 

T-A~(PA, B) 

T-Alg(A’, B) 

(4.2) 

(4.3) 

and in 
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T-Ak,M B) 
JAB 

’ T-Alg(A, B) 

T-At&(q,, B) \ / 
E 

nnLl 

T-Alg,(A’, B) 

(4.4) 

In elementary terms, the universal property of PA expressed by (4.3) is the fol- 

lowing: its one-dimensional aspect asserts that any morphism f: A --t B of algebras 

has the form 

PA 
A - A’ 

\I f g 
(4.5) 

B 

for a unique strict morphism g, while its 2-dimensional aspect asserts that, for strict 

g and g*, any 2-cell p : gpA + g*pA is ap,,!, for a unique cz : g + g*. Note that the left 

diagram of (4.2) gives g = 4A when f= 1,. 

Remarks 4.1. We break off now to say a few words about equivalences in a 2-cate- 

gory; for more details, see the forthcoming [24]. An adjoint equivalence is an 

adjunction V, E :fi u : A -+ B for which the unit q : 1 + uf and the counit E : fu + 1 

are invertible. For the general theory of adjunctions in a 2-category, see [28]; it 

follows therefrom that the adjoint equivalences in any 2-category themselves form 

a 2-category. Note that, for any adjunction whatsoever, E is uniquely determined 

by u, f, and I?; and that, given any v : 1 + uf and E : fu + 1, the triangular equation 

(&f)(fq) = id is a consequence of the other triangular equation (uE)(~u) = id if q is 

invertible. A map u : A + B is an equivalence if there is some adjoint equivalence 

q, E : f i u. For this it suffices that there be an f: B ---) A and invertible 2-cells r : 1 z 

uf and Q : fu= 1; we have only to set E =~(fr~‘u)(~-‘fu). If u is an equivalence, its 

equivalence-inverse f is determined to within an isomorphism. An equivalence u is 

said to be surjective if it is a retraction - that is, if uf = 1 for some f; then any 

equivalence-inverse of u is necessarily isomorphic to f, and consequently there is an 

adjoint equivalence V, E : f i u with q the identity. For 2-categories 9 and X, a 

map u: G-t H in Hom[P,X] (see [23, Section 61) is an equivalence if and only if 

each up : GP --f HP is an equivalence in X; in fact, given u and adjoint equivalences 

ylP, ap: fp i up: GP+ HP, it follows from the discussion in [28] of mates that there 

is a unique extension of the fp to an f: H+ G in Hom[.9,.X] with V,E: f i u. 

Here, even when G and Hare 2-functors and u is a 2-natural transformation - that 

is, a map in [9,X] - it is not in general the case that u is an equivalence in [9,X]. 

A functor u :A + B in Cat is an equivalence if and only if it is fully faithful and 

there is a function assigning to each b E B an fb E A and an isomorphism qh : b E 
ufb; it is not enough to require that every bE B be isomorphic to some ua, unless 
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our category Set of small sets satisfies the axiom of choice - which, in order that 

our results may continue to hold in wider contexts, we do not impose. 

Recall that, by the left diagram in (4.2), we have qApA = 1. In fact, qA iS a SUrjeC- 

tive equivalence in T-Alg: 

Theorem 4.2. For each T-algebra A, there is a unique invertible algebra-2-cell 
Q~ : pAqA z 1 with @ApA = id and qA @A = id; thus qA is a surjective equivalence in 

T-Alg, and id, eA : pA i qA is an adjoint equivalence. 

Proof. By Remarks 4.1, @A is unique if it exists, and an invertible @A : pAqA = 1 

automatically satisfies the triangular equation qA@A = id if it satisfies the triangular 

equation &&p/r = id. By Remark 2.7, the pseudo-limit 

(4.6) 

exists in T-Alg, and u, u are strict morphisms of algebras. Since we have the com- 

mutative diagram 

there is by the one-dimensional universal property of (4.6) a unique algebra-mor- 

phism f : A + C satisfying 

uf = 1.4, u.f =PA, Af= id. (4.7) 

Let f = gp, with g strict as in (4.5). Since 1, = q/rpA by (4.2), the first two equations 

of (4.7) may be written as UgpA =qApA and ugp,$ =pA; whence ug= qA and vg= 1 

by the uniqueness of g in (4.5). From the invertible 2 : pAu E u we get the invertible 

@A = Ag : pA qA =pA ug = vg = 1; and by the third equation of (4.7) we have @A pA = 

ngp,=nf=id. 0 

Remark 4.3. The triangular equation represented by the left diagram of (4.2) is, 

of course, the A-component of the equation Jq. pJ= 1 : J+ J. Since we do not use 

it below, we leave the reader to Verify that the @A Satisfy g’@A =@,g’ for a strict 
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morphism g : A + B, and hence constitute a modification Q : pJ. Jq ---f 1 : J( )‘J-+ 
J( )‘J. 

Returning to the context of Theorem 4.2, we consider those algebras A for which 

qA is a surjective equivalence not only in T-Alg but in T-Alg,. 

Theorem 4.4. For a T-algebra A, the following assertions are equivalent: 
(a) qA : A’+ A is a surjective equivalence in T-Alg,. 

(b) qA : A’+ A is a retraction in T-Alg,. 

(c) A is a retract of B’ in T-Alg, for some T-algebra B. 

Proof. Since qA is an equivalence in T-Alg by Theorem 4.2, and since the inclusion 

of T-Alg, in T-Alg is locally fully faithful, (a) and (b) are equivalent by Remarks 

4.1; moreover (b) implies (c) trivially. Suppose now that r: B’+ A is a retraction in 

T-Alg,. By the second diagrams of (4.1) and (4.2) we have in T-Alg, the equation 

qAr’(pB)‘=rq&pB)‘=r; whence qA, like r, is a retraction in T-Alg,. 0 

Remark 4.5. We call a T-algebra A flexible if it satisfies the equivalent conditions 

of Theorem 4.4; as we said in Subsection 1.3, the notion of flexible algebra is impor- 

tant in a number of contexts going beyond its use below in the present article. The 

term ‘flexible’ was first used, in the special case where the T-algebras are themselves 

2-monads, in [17, Section 3.31 and in [18, Section 8.91. Of course, every algebra A 
of the form B’ is flexible; but we shall see in Example 4.10 below that not every 

flexible algebra has this form. When A = B’, we have by the second diagram of (4.2) 

an explicit equivalence-inverse for qA in T-Alg,, namely (ps)‘. So alongside the sur- 

jective equivalence pB, -I qe8 : B” -+ B’ in T-Alg we have a surjective equivalence 

(ps)’ -I qs, : B”+ B’ in T-Alg,. In fact there is a further surjective equivalence 

(ps)‘-l (qs)‘: B” 4 B’ in T-Alg,; these three, although of course isomorphic, are in 

general distinct, as the following example shows: 

Example 4.6. Take for T the finitary 2-monad on Cat for which TA is A provided 

freely with a terminal object, and the rest of the structure is evident. Then a T-algebra 

is a category A with an assigned terminal object tA, a morphism f: A --f B is a 

functor f: A + B such that the map ftA + t, is invertible, and a strict morphism is 

. such a functor with ftA = t,, see Subsection 6.5 below. It is clear that A’ is the 

category A with one new object t,,, with a unique and invertible map tA + t,,, and 

with all that flows freely from this; while p A : A ---t A’ is the inclusion, and qA is the 

identity on A and sends t,.,,, to t,. In turn, A” has yet a new object tA- isomorphic 

to t,+,, and to tA. A simple calculation shows that pA,(tA,) = t/l< while (pA)‘(tAI) = t,., 
so that pAz#(pA)‘; and that qA,(tA,)= t*,, while (qil)‘(tAz)= t*, so that qA,f(qA)‘. 

We now consider the still larger class of those algebras A for which qA is an 

equivalence in T-Alg, but not necessarily a surjective one. It is not yet clear to us 
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whether this class is important enough to deserve a special name; for the moment 

we compromise by calling such algebras semi-flexible. However that may be, the 

following theorem is important; for various of the conditions equivalent to semi- 

flexibility are properties of flexible algebras needed below. We distinguish (e) from 

(f) in the theorem because we are avoiding any appeal to the axiom of choice. 

Theorem 4.1. For a T-algebra A, the following assertions are equivalent: 
(a) qA : A’- A is an equivalence in T-Alg,. 

(b) A is equivalent to B’ in T-Alg, for some T-algebra B. 
(c) A is equivalent in T-Alg, to some flexible algebra. 
(d) pA : A + A’ is isomorphic to some strict morphism k : A + A’. 
(e) There is a function assigning to each morphism f: A + B with domain A a 

strict morphism h : A + B and an isomorphism f z h. 
(f) Each morphism f: A + B with domain A is isomorphic to some strict mor- 

phism h:A+B. 
(g) The 2-natural transformation JA_ : T-Alg,(A, -) -+ T-Alg(JA, J-) is an equi- 

valence in [T-Alg,, Cat]. 

Proof. (a) implies (b) trivially, and (b) implies (c) trivially since B’ is flexible. To see 

that (c) implies (a), let g : A --f B be an equivalence in T-Alg, with B flexible; since 

the 2-functor ( )‘J: T-Alg, + T-Alg, preserves equivalences, g’: A’+ B’ is an equiva- 

lence in T-Alg,; since B is flexible, qs is an equivalence in T-Alg,; it follows from 

the second diagram of (4.1) that qA is an equivalence in T-Alg,. Because qA and PA 

are equivalence-inverses in T-Alg by Theorem 4.2, it is immediate that (a) and (d) 

are equivalent. To see that (d) implies (e), let a:p, E k with k strict; then with f = 

gpA as in (4.5) we have go : f =gp, =gk, and we set h =gk. It is trivial that (e) im- 

plies (f) and (f) implies (d). It remains to prove the equivalence of (a) and (g). Since 

ZA_= 71J~,_ . . T-Alg,((JA)‘, -) z T-Alg( JA, J-) is an isomorphism in [T-Alg,, Cat], it 

follows from (4.4) that (g) is equally the assertion that T-Alg,(q,, -) : T-Alg,(A, -) + 
T-Alg,((JA)‘, -) is an equivalence in [T-Alg,, Cat]. Because the Yoneda embedding 

(T-Alg,)oP + [T-Alg,, Cat] is fully faithful, this last assertion is indeed equivalent 

to (a). q 

Corollary 4.8. Given morphisms f, f * : A’ + B and a 2-cell p : fpA + f *PA, there is a 
unique 2cell cr : f + f * with opA = p; and ff is invertible when p is. 

Proof. That it is so when f and f * are strict morphisms is the two-dimensional 

aspect of the universal property of PA, as discussed following (4.5). However, since 

A’ is flexible, it follows from Theorem 4.7(f) that f and f * are isomorphic to strict 

morphisms h, h* : A’-+ B. The result follows. 0 

Remark 4.9. Any equivalence-inverse k : A + A’ in T-Alg, to qA : A’+ A gives an ex- 

plicit equivalence-inverse to the JA_ in (g) of Theorem 4.7, namely T-Alg,(k, -). rc,‘. 
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The B-component of this sends f: A + B to gk : A --f B where g is determined from 

f by gp, =f as in (4.9, and sends /3: f + f * to ak where cr is determined by crp, =/I. 

(Note that, when A is flexible and qAk= 1, the equivalence T-Alg,(k, -) . TC;! is 

surjective; we may express this by saying that J,+ is an op-surjective equivalence.) 

In particular, JAI- : T-Alg,(A’, -) + T-Alg(JA’, J-) has by Remark 4.5 the equiva- 

lence-inverse sending f: A’+ B to g(pA)‘, where g : A” --f A’ is the strict morphism 

with gpA8=f. On the other hand, qA being by Theorem 4.2 an equivalence-inverse 

of pA in T-Alg, it follows from (4.3) that JA,_ is an op-surjective equivalence with 

equivalence-inverse xi! . 7’-Alg(p,, -); the B-component of this last sends f :A’+ B 
to h :A’+ B, where h is the strict morphism with hp, =fpA. These two equivalence- 

inverses of JAI_, which are necessarily isomorphic, are in fact equal. To see this, it 

suffices by the uniqueness in (4.5) to show that g(pA)‘pA = hpA; but the left 

diagram of (4.1) gives g(pA)‘pA = gpA’pA = fpA = hp,. 

Example 4.10. It is easy to see that, in Example 4.6, although not every algebra A 

is of the form B’ (since B’ has at least two objects), yet every algebra is flexible. This 

is far from being the case in general. Let T be the finitary 2-monad on Cat, referred 

to in Subsection 1.3, whose algebras are small categories with assigned finite limits, 

so that T-Alg = Lex; here the strict morphisms (see Subsection 6.5 below) are the 

functors that preserve the assigned limits on the nose. Now the unit category 1 is 

not even semi-flexible. To see this, let Z be the category with two objects 0 and 1 

and mutually-inverse isomorphisms 0 + I and 1 + 0; and suppose the finite limits in 

Z to be so assigned that 1 is the terminal object, while 1 x 1 =O. Since T-Alg,(l,Z) 

is empty while T-Alg(l,Z)=Z, it follows from (g) of Theorem 4.7 that 1 is not 

semi-flexible. 

Example 4.11. A simpler example to illustrate the possibilities is the following. 

There is by Remark 3.15 a finitary 2-monad T on Cat x Cat, given on objects by 

T(X, Y) = (X,X+ Y), with T-Alg, = [2, Cat] and T-Alg = Psd[%, Cat]. In elementary 

terms, a T-algebra A is a functor a : X+ Y, a morphism from a :X-t Y to b : V-t W 

consists of functors u : X-+ V and u : Y + W and an isomorphism cr : bu E va; and a 

strict morphism is one for which a is the identity. It is easy to describe A’ when A 

isthealgebraa:X-tl;itisthealgebraj:X~Xwhereob~=obX+{*}and~is 

chaotic (that is, every horn-set in X is a singleton). The morphism pA :A +A’ is 

given by the functors 1, :X+X and *: 1 -X, with the unique isomorphism 

jl,~ *a. (To verify these assertions, just define A’ and pA as above and check the 

universal property (4.5).) It follows that q,, : A’+ A is given by lx :X-t X and the 

unique a :x- 1. Any strict k = (u, u) : A +A’ must have u a constant functor; if k 
is to be an equivalence in [2, Cat], u must be an equivalence in Cat; a constant func- 

tor u : X+ A’ is an equivalence only if X is chaotic; so not every algebra is semi- 
flexible. For this A to be flexible, there must be an equivalence k = (u, u) : A + A’ in 

[2, Cat] with q,k= 1, and hence with u = l,, . since X must be chaotic and u con- 

stant, this is impossible unless X= 1. Accordingly, I+ 1, with Z as in Example 4.10, 
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is not flexible. Yet it is easily seen to be equivalent in [2, Cat] to l--t 1, and 1 + 1 is 

easily seen to be flexible; accordingly, by Theorem 4.7(b), not every semi-flexible 
algebra is flexible. Finally, not every flexible A is B’for some B; if the flexible 1 + 1 

were B’ where B was the algebra b: V 4 W, the first diagram of (4.2) would force 

I/= W= 1; but (l+ 1)’ is not l+ 1. 

Proposition 4.12. There is a unique pseudo-natural transformation r : J( )‘- 
1 : T-Alg + T-Alg such that rp = 1 and rJ= Jq. 

Proof. The requirement rJ= Jq forces the component v, : A’+A to be qA. The 

requirement rp = 1 forces the composite 2-cell 

PA qA 
A-A/-A 

B-B’-B 
PB % 

to be theidentity. Sinceqsf’pA=qepsf=lf=fl=fq~pA, thereis byCorollary4.8 

a unique rf in (4.8) with rfpA =id; moreover, rf is invertible. That r so defined is a 

pseudo-natural transformation follows from the uniqueness in Corollary 4.8; and 

that rJ=Jq follows from the second diagram of (4.1). 0 

5. On various biadjunctions 

Recall from [23, Section 61 that, given homomorphisms P : Jif -+ g and Q : 9 -+ 

&if of bicategories, an equivalence t : &(Q?, -) + 9(?, P-) in the 2-category 

Hom[9°P, Hom[&, Cat]] is said to exhibit Q as a left biadjoint of P. This defini- 

tion is not in fact unsymmetrical, for Street points out in [36, (1.35)] that the 

2-category Horn [jet, Horn [LZ? Op, Cat]] is isomorphic to that above. The forthcoming 

[24] will give a fuller treatment of biadjunctions; but those that occur below are so 

special and so simple that the general theory is unnecessary for a precise understan- 

ding of their content. Accordingly, we confine ourselves here to a few remarks 

without proofs, chiefly to fix the nomenclature. 

In our applications the bicategories J& and LK? are 2-categories. The component 

tL,QL of t sends the identity of QL to a map sL : L + PQL; and t further determines 

components s, for q : L + L* which make of s a map 1 + PQ in Hom[&?, 91, called 

the unit of the biadjunction. The equivalence of categories tLM :&(QL,M) --f 
&?(L, PM) is isomorphic to the functor 9((sL, PM)PQL,M, which is therefore itself 

an equivalence for each M. This last fact is usually expressed by saying that sL is 

the unit for a birepresentation tL_ :.IzZ(QL, -)=g(L, P-) of the homomorphism 

2?(L, P-) : .A -+ Cat; recall from [23] that = denotes an equivalence while G denotes 

an isomorphism. Conversely, a homomorphism P : JL? ---t 9 admits a left biadjoint 
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if and only if 9&P-) is birepresentable for each L; whereupon the left biadjoint 

Q is determined to within equivalence in Hom[g, Jz’]. We often write Q-lb P to 

denote that Q is a left biadjoint of P. (We repeat for emphasis that, when we say 

of a 2-functor P : At? --f 9 that it has a left adjoint - as we have already done many 

times in this article - we always mean an honest left adjoint in the sense of Cat- 

enriched category theory, given by an isomorphism &(Q?, -) =9(?, P-) in 

]Y’? ]J& Catll.1 
We now return to our situation where T is a 2-monad with rank on a complete 

and cocomplete X. Recall again from [28] the concept of mates. 

Theorem 5.1. Let 9 be a 2-category and G : T-Alg +J_?? a 2-functor such that the 
composite GJ of G with the inclusion 2-functor J: T-Alg,+ T-Alg has a left 
adjoint H: LZ + T-Alg, with unit s : 1 + GJH. Then: 

(a) If k: H+ ( )‘JH is the mate, under the adjunction Hi GJ, of the com- 
posite 

1 - GJH S GPJH GJ( )‘JH, 

we have qH. k = 1 : H+ H; thus, since qHL kL = 1 for every L ~9, each algebra HL 
is flexible. 

(b) If t : T-Alg(JH?, -) ---) 9(?, G-) is the composite 

T-Alg(JH?, -) CJH?- g(GJH?, G-) v 14(?, G-) 
St)(s?,G-) 

(5.1) 

in [go”? [T-Alg, Cat]], so that the component t,, : T-Alg(JHL, A) --f Wr(L, GA) is 
the functor sending u : f + f * : JHL --) A to Go. SL : Gf . SL - Gf *. sL : L + GA, 

then each t,, is a surjective equivalence in Cat; accordingly t is a surjective equiva- 
lence in Hom[LZ? “4 Horn [T-Alg, Cat]], and exhibits JH as a left biadjoint of G, 
with s : 1 + GJH as unit. 

Proof. The k of (a) is determined by the equation GJk- s= GpJH- s; composing this 

with GJqH on the left and using Jq-pJ=l (see Remark 4.3) gives GJ(qH. k).s= 
1. s= GJl . s, whence qH. k= 1 by the one-dimensional universal property of s as 

the unit of the adjunction H-I GJ. We turn now to (b): by this same universal 

property of s, every h : L --* GA is Gg . sL for a unique strict g : JHL + A; writing 

u,,h for this g, we have h = tLA u,,h. Moreover I,, is fully faithful: each p : 
Gf. sL + Gf *. SL is Ga . SL for a unique cr : f + f *. For this is true, by the two- 

dimensional universal property of s as the unit of Hi GJ, when f and f * are 

strict; and every f: JHL + A is isomorphic to a strict morphism, by Theorem 4.7 

and the flexibility of HL given by (a). It follows from Remarks 4.1, first that each 

tLA is a surjective equivalence in Cat, and then that t is a surjective equivalence in 

Horn [9 “9 Horn [T-Alg, Cat]]. 0 
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Remark 5.2. The biadjunction of Theorem 5.1 is special in many ways. First, a left 

biadjoint, even of a 2-functor, is in general only a homomorphism of bicategories, 

and cannot be chosen to be a 2-functor; yet here G has the 2-functor JH as a left 

biadjoint. Secondly, the unit of a biadjunction is in general only pseudo-natural; but 

here it is the 2-natural s. Thirdly, the equivalence t here is a surjective one, and even 

more is true: not only is every h : L + GA of the form Gg. sL for some g : JHL + A 
(and in general for many such g), but among these g there is exactly one that is strict. 

Finally, although the general theory of Remarks 4.1 tells us only that t is a surjective 

equivalence in Hom[gop, Hom[T-Alg, Cat]], we in fact have 

Proposition 5.3. The t of Theorem 5.1 is a surjective equivalence in 

w OP, Horn [T-Alg, Cat]]. 

Proof. Write u for the composite 

Y(?, GP-) 
L??(?, G-) ’ g(?,GJ( )‘-) % T-Alg,(H?, ( )‘-) 

T-Alg(JH?, -) 4 
T-Alg(JH?, Y-) 

T-Alg(JH?, J( )‘-) 

where v : g(?, GJ-) E T-Alg,(H?, -) is the adjunction-isomorphism and r : J( )‘- 1 

is the pseudo-natural transformation of Proposition 4.12. The first three factors lie 

in [gap, [T-Alg, Cat]], but the fourth only in [Loop, Hom[T-Alg, Cat]], since Y lies 

only in Hom[T-Alg, T-Alg]. Because t lies in [Loop, [T-Alg, Cat]] and is an equiva- 

lence in Hom[9°p, Hom[T-Alg, Cat]], and because the inclusions of the various 

2-categories in question are locally fully faithful, the proposition will be proved if 

we show that to= 1. We have the equations 

t. T-Alg(JH?,r-) = g(?, Gr-). t?,,( ), 

= 9(?, Gr-) . 9(s?, GJ( )‘-) . GJH?,JC )I_, 

the first because t is 2-natural in both variables, and the second by the definition 

(5.1) of t. But the composite 

g(s?, GJ( I'->. G,?,J( I'-. JH?,( )‘m. “?,( y 

is the identity, by the analogue for the present adjunction of (4.3). It follows that 

tu =L?(?, Gr-). LZ?(?, Gp-), which is indeed the identity by Proposition 4.12. q 

Applying Theorem 5.1 to the case where G is the inclusion 2-functor T-Alg + 

T-Alg,, and recalling from Theorem 3.13 that the inclusion 2-functor GJ: T-Alg, + 

T-Alg, too has a left adjoint, we get 
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Corollary 5.4. If ( >’ is the left adjoint to the inclusion T-Alg, + T-Alg,, the inclu- 
sion T-Alg + T-Algt has J( )’ as a left biadjoint; moreover every At is a flexible 
algebra. 0 

Remark 5.5. In the special case (see Remark 3.15) where T-Alg, is [P,Cat], the 

fact that each At is flexible is otherwise proved in Bird’s thesis [4]. Bird further 

shows that the inclusion T-Alg + T-Alg, (or Psd [9, Cat] + Lax[.Y, Cat] in his case) 

has in general no left adjoint. If it had a left adjoint S, we should have At z (SA)‘; 
but in fact a general At is not of the form B’ - in particular, using the language 

of [23, Section 51, a lax limit is not in general a pseudo-limit. For a counter-example 

we take 9 = 2, so that T is the 2-monad of Example 4.11 above. For A = (1 + l), we 

see at once that At = (0 : 1 --* 2). If this were B’= (b : V+ W)‘, the first equation of 

(4.2), which forces Vand W to be retracts of 1 and 2 respectively, leaves (1 --f 1) and 

(0: 1 --t 2) as the only possibilities for B; and neither of these satisfies B’E At. 

Applying Theorem 5.1 to the case where G is the forgetful 2-functor U: T-Alg --, 

X, and recalling that UJ= US : T-Alg, +X has the left adjoint F, with unit i: 1 -+ 

USC, = T, we get: 

Corollary 5.6. The forgetful U: T-Alg +X has JF, as a left biadjoint, with unit 
i : l---f UJF, = T; moreover every free T-algebra TA = (TA, mA) is flexible. 0 

Remark 5.7. It follows from Theorem 4.7 and the flexibility of free algebras that 

every algebra-morphism TA --f B is isomorphic to a strict one; this was proved other- 

wise in [18, Section 2.21. 

We turn now to bicolimits in T-Alg, and refer the reader again to [23] in general 

and its Section 6 in particular. For a small 2-category 9, write K: [9, Cat] --f 

Psd[9, Cat] for the inclusion, ( )” for its left adjoint given by Theorem 3.16, and 

u : 1 + K( )” for the unit - to avoid confusion with the adjunction ( )‘i J and its 

unit p. (It is convenient to use bold-face letters not only, as we have done, to dis- 

tinguish maps in T-Alg from those in T-Algs, but now too to distinguish maps in 

Psd[g, Cat] from those in [9’, Cat].) Recall from Theorem 3.8 that T-Alg, is co- 

complete; we write as usual F*G for the colimit of G: P+ T-Alg, indexed by 

F: Pop --f Cat, and we write v~,~ : F-+ T-Alg,(G-, F* G) for its unit. 

Theorem 5.8. Let F: .9 + Cat and G : 9 -+ T-Alg be 2-functors with W small, and 
write G’ : 9 + T-Alg, for the composite ( )‘G. Then F” * G’, together with the unit 
wF,o given by the composite 

F-F” x T-Alg,(G’-,F” *G’) 
UF a, 

7 T-Alg(G-, F” *G’) (5.2) 

where z is the adjunction isomorphism of (4.3), provides an F-indexed bicolimit 
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F*, G of G in T-Alg. Accordingly T-Alg admits all bicolimits F*b G, even those 
where 9 is a small bicategory and F and G merely homomorphisms of bicategories. 

Proof. The second assertion follows from the first by [23, Proposition 6.11. By 

[23, Proposition 6.21, we establish the first assertion by producing a left biadjoint 

- *,, G to the 2-functor KG : T-Alg + Psd[Yop, Cat], where G : T-Alg -+ [.Yop, Cat] is 

given by GA = T-Alg(G-, A). However, the isomorphism 7c : T-Alg,(( )‘G-, A)= 
T-Alg(G-, JA) gives an isomorphism (G’)-E dJ: T-Alg, --f [Yap, Cat], so that 

KGJ=K(G’)-has the left adjoint (- *G’)( )” = (-)” *G’; whence by Theorem 5.1 

we have J((-)” *G’) as a left biadjoint to KC?, with the unit w given by (5.2). q 

Remark 5.9. Recall from [23, Section 51 that F” *G’ is the pseudo-colimit F*P G’ 
in T-Alg,; so that we can express the value of the bicolimit in T-Alg, when F and 

G are 2-functors, by 

F*, G = J(F*p G’). (5.3) 

Remark 5.10. As the biadjunction of Theorem 5.1 has various special quali- 

ies, noted in Remark 5.2, so too has the bicolimit above. Not only is every map 

k:F-+ T-Alg(G-, A) isomorphic - as is required by the definition of bico- 

imit - to T-Alg(G-,g)w for some g: Fe,, G -+ A in T-Alg; it is actually equal to 

T-Alg(G-, g) w for various g, exactly one of which is a strict morphism of algebras. 

Remark 5.11. A little more can be said. Since (G’)-=eJ: T-Alg, + [Wop,Cat] 

already has the left adjoint - *G’, so G : T-Alg --f [go4 Cat] already has, by Theorem 

5.1, the left biadjoint J(- *G’). What this implies, among other things, is that if 

the k in Remark 5.10 is 2-natural and not merely pseudo-natural, the unique strict 

g : F*b G = F*P G’-+ A there factorizes further through the canonical F*P G’+ F* G’ 
in T-Alg, to give a unique strict h : F * G’ -+ A. The reader may find it interesting to 

work through this in the simple case F=dl of conical bilimits. 

We pass on now to the study of two 2-monads T= (T, i, m) and S= (S, j, n) on X 

and a strict map 8 : S + T of 2-monads. As we pointed out in the remarks preceding 

Theorem 3.9, there is a bijection 13 H 0’ between such maps 13 and those 2-functors 

T-Alg, + S-Alg, which commute with the forgetful 2-functors to Y&C. Generalizing 

the nomenclature of Lawvere [31], where T and S are in effect finitary monads on 

Set, we may call such 2-functors afgebraic. More often than not, 0 is not given ex- 

plicitly - indeed T and S may not be explicitly known - but its existence is inferred 

from that of an evident algebraic functor. Thus T-algebras and S-algebras might be, 

respectively, categories with finite limits and categories with finite products; or cate- 

gories with finite products and symmetric monoidal categories; or strict monoidal 

categories and monoidal categories. 

Still denoting by J the inclusion T-Alg, + T-Alg, we now write K for the inclu- 
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sion S-Alg, --f S-Alg. The 2-functor 8* extends to a 2-functor O# : T-Alg -+ S-Alg, 

sending the algebra (A, a) to (A, a. @A), the morphism/= (f,f) : A + B to (f,f. &4), 

and the 2-cell a:f+g to (x. So @J=KO*, and clearly 0# commutes with the for- 

getful 2-functors from T-Alg and from S-Alg to X. 

Supposing now T and S each to have a rank, we retain ( )’ for the left adjoint 

of J, with unit p : 1 + J( )‘, and write ( )” for the left adjoint of K, with unit 

u:l+K( )“. We write &:S-Alg, + T-Alg, for the left adjoint of 8” given by 

Theorem 3.9, with z: 1 + B*B, for its unit. 

Theorem 5.12. Let T and S be 2-monads with rank on a complete and cocomplete 
2-category X, and let 6’ : S + T be a strict map of 2-monads, the rest of the notation 
being as above. Then 19~ : T-Alg + S-Alg has 8, = JO,( )” as a left biadjoint, with 
unit w : 1 + 9#8, given by the composite 

l 7 KC 1” Kz( )” - K8*8,( )” = O#J&.( )” = 8#B,, 

whose component wB at BE S-Alg is 

(5.4) 

Proof. Immediate from Theorem 5.1 since B#J = KB* has the left adjoint 

0*( )“. 0 

Remark 5.13. If 1 is the identity 2-monad on YZ, we have I-Alg,= 1-Alg=X. The 

forgetful U,: T-Alg, -tX is itself an algebraic functor, and the corresponding 13 is 

i : 1 -+ T, while i# is U: T-Alg +X. Accordingly, Corollary 5.6 is a special case of 

Theorem 5.12. 

Remark 5.14. In this special case where S= 1, the ug of (5.4) is the identity, so that 

the biadjunction F-it, U and the adjunction F, -I US have the same unit i. There 

being flexibility in the choice of a unit for a birepresentation, the reader may well 

wonder whether zg : B + O*O,B = 8#B,B is not itself a unit for a birepresentation of 

S-Alg(B, f3#-) : T-Alg + Cat, in which case it could replace the more complicated 

WB of (5.4). By [36, (l.ll)] (see also [24]), this is so if and only if, for some equiva- 

lence g : t&B’ + t9,B in T-Alg, the composite 8#g. wg is isomorphic to zg. Now if 

u: ( )“K+ 1 is the counit of the adjunction ( )” -I K, the naturality of z gives 

zguB=8*@*uB.i$0; and since uBuB=~ by (4.2), we have zB= 8*0*~B* WB = 

8# 8*uB. wB. Accordingly, zB is indeed a unit for the birepresentation whenever the 

map e*ug of T-Alg, is an equivalence in T-Alg. This is certainly so when B is a semi- 

flexible S-algebra, so that vB is already an equivalence in S-Alg,; and we saw in Ex- 

ample 4.10 that there are non-trivial S - such as the 2-monad of Example 4.6 - for 

which every algebra is semi-flexible, although this is false in general. In fact it is not 

in general the case that zB is a unit for the birepresentation, as the following con- 

siderations will show. 
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Let T-algebras and S-algebras be respectively strict monoidal categories and 

monoidal categories, B* being the inclusion. Here S-Alg is (see Subsection 6.1) the 

2-category of monoidal categories, strong monoidal functors, and monoidal natural 

transformations; and T-Alg is the full (not just locally full) sub-2-category deter- 

mined by the strict monoidal categories, 8# being the inclusion. 

Proposition 5.15. In this case of monoidal categories and strict monoidal cate- 
gories, any unit x: B -+ d*C for a birepresentation of S-Alg(B, 8#-) : T-Alg -+ Cat 
is an equivalence in S-Alg. 

Proof. It has long been known in the folklore that every monoidal category is 

equivalent in S-Alg to a strict one; there is a proof in [33]. Let f: B + O#A be 

such an equivalence, with equivalence-inverse g. Because x is a unit for the bi- 

representation, there is some h : C-+,4 in T-Alg with O#h e x=:f. Since this gives 

g. B#h. x E gf = 1, to prove x an equivalence it remains to show that xg . B#h E 1. 

Because B# is full, xg : 8#A -+ 8#C has the form B#k; and O#(kh) . x = xg .19#h. x = 

x = O#l. x. The two-dimensional universal property of x now gives kh z 1, whence 

xg.8#h=8#(kh)=l. q 

Proposition 5.16. It is not the case that to each monoidal category B we can assign 
a strict monoidal category B and a strict monoidal functor x, : B--f B which is an 
equivalence of categories. 

Proof. Suppose the contrary. Let B = (B, 0, Z, a, 1, r) be a monoidal category which 

admits a second monoidal structure B1 = (B, 0, I, a’, I’, r’) with the same under- 

lying category B, with the same @ and I, but with say a’ #a. Let x, : B + B 
be as in the statement of the proposition, so that B= (B, a,z 1, 1,l) is a strict 

monoidal category. Use the equivalence x to transport a’, I’, r’ to B, getting a 

new monoidal category C= (B, @,f,a2,12, r2). (That is, if y is an equivalence- 

inverse of x with q : 1 ~xy, we define the component a:,,, : b 0 c@ d + b @ c@ d 
as (qb 0 rlc 0 rd))’ (xa$yc,yd)(nb 0 nc 0 nd), and so on.) Now a2 # 1 since a’ #a. 
Yet the equivalence xc : C+ C has x(a2) = 1; and has x(1) = 1 simply because x is a 

functor. Since x, being an equivalence, is a faithful functor, this contradicts a2 # 1. 

A suitable B for the argument is the category of graded abelian groups with its 

usual monoidal structure, and with the unusual structure given by a’((~@ y) @z) = 

(-1) dimX~@(y@~), I’(1 @y)=y, and r’(x@ l)=(-l)dimX~; a simple check shows 

that the unusual structure does indeed satisfy the coherence axioms. 0 

So we have 

Proposition 5.17. In the situation of Theorem 5.12, there is in general no unit 
B --+ 8#C for a birepresentation of S-Alg(B, O#-) which is a strict map of S-alge- 
bras. Consequently, zg : B + 8*&B = 9#B,B is not in general such a unit. 0 
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6. Some examples of 2-monads 

6.1. We devote this final section to a largely-informal discussion of some represen- 

tative examples of 2-monads, along with their algebras and the various morphisms 

of these, at greater length than would have been appropriate in the introduction, 

where a very few examples were mentioned in the last paragraph of Subsection 1.1; 

the reader should recall from that paragraph the 2-category Cat, of small cate- 

gories, functors, and natural isomorphisms, which is complete and cocomplete by 

[23, Proposition 3.11. 

In practice one is seldom presented with a 2-monad and invited to consider its 

algebras; more commonly one contemplates some structure borne by a category, or 

by a family of categories, or by an object of a functor-category [W, Cat], and so on, 

and one concludes in certain cases that the structure is given by an action of a 

2-monad on whatever bears it. 

Perhaps the simplest kind of a structure on a category A to recognize as 2-monadic 

is one given by a number of endomorphisms of A (say t,s: A +A), a number of 

natural transformations between composites of these (say a: ts+ t and p: L’S), 

and a number of equations between composites of the latter (say a(tP) = 

&as) : tss+ t). The most classic example is that of a monad on A; but we could 

equally well have a mere endofunctor, or a pointed endofunctor, or two monads 

with a distributive law between them, and so on. It is also possible to have equations 

at the level of the endofunctors: as for an idempotent monad, given by t :A +A 

with t2 = t and by q : 1 -+ t with ryt = tq = id. In each case there is a strict monoidal 

category A4 - which is the same thing as a monoid in Cat - generated by the names 
of the endofunctors and the natural transformations, subject to the equations. To 

give a structure of the prescribed type on a category A is to give a monoid-map 

M+ [A,A], or equivalently an action M xA +A. Here the finitary 2-monad T on 

Cat is Mx -, and this of course determines what strict morphisms, morphisms, and 

lax morphisms of algebras should be, as well as the algebra-2-cells. In the case of 

a monad on A, the strict monoidal M is the simplicial category A; here the lax mor- 

phisms are precisely the monad-functors of Street [34], while the algebra-2-cells are 

his monad-junctor-transformations. 
Scarcely more complicated are such structures as a strict monoidal category, a 

monoidal category, or a symmetric monoidal category, where instead of endofunc- 

tors we now have functors of several variables such as @ : A2 + A and I : A0 + A, 

but with natural transformations, like the associativity (r : (a @ 6) 0 c + a 0 (b 0 c) 
and the symmetry y : a@ b -+ 60 a, that do nothing more than permute the 

variables. Again there are equations - such as the coherence conditions - between 

composites of derived natural transformations; and possibly equations - as for a 

strict monoidal category - between iterates of the functors themselves. In [13] and 

[14], Kelly analyzed such situations in the following terms. 

From categories A and B we form a category {A, B}, an object of which is a 

natural number n together with a functor t : A” + B; there are morphisms (n, t) + 
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(m, s) only when m = n, and then a morphism is a permutation r of n together with 

a natural transformation (Y : tAr -+ s. (The reader is unlikely to confuse this use of 

{ , } with our earlier use for indexed limits in general and cotensor products in 

particular.) There is an evident arities functor {A,B} + P where P is the category 

of natural numbers and permutations. The 2-functor {A, -} : Cat + Cat/P has a left 

adjoint - o A; for an object r: C + P, or C for short, of Cat/P, an object of CoA 

is an expression c(a,, . . . , a,) where c E C with Tc = n and a, E A, while a map 

c(a,, .a-, a,)+&&,..., 6,) is an expression f(g,, . . . , g,) where f : c + d in C with 

rf = < and gi : ai + bCj in A. We may embed Cat in Cat/P by identifying A E Cat 

with the functor A + P constant at 0; then the 2-functor 0 : Cat/Px Cat + Cat 

extends in a simple way to a 2-functor 0 : Cat/P x Cat/P + Cat/P, which is im- 

mediately seen to be associative and to have as unit the functor 1 + P naming 1 E P. 
Consequently Cat/P is a monoidal2-category which acts on Cat, the tensor product 

and the action both being denoted by 0. A o-monoid M in Cat/P is called a club; 
each category A gives an endo-club {A, A}. 

Consider now a structure on a category A of the kind discussed in the penultimate 

paragraph. It is shown in [14] that the names of the structural functors and the 

structural natural transformations, along with the equational axioms, provide 

generators and relations for a club M, and that to give such a structure on A is to 

give a monoid-map M+ {A, A}, or equivalently an action MO A --+ A. Accordingly 

such A are the algebras for the finitary 2-monad T=Mo - on Cat. It is now easy 

to see what the various algebra-morphisms are: for monoidal (symmetric monoidal) 

categories, strict or not, the lax morphisms are the monoidal functors (symmetric 

monoidal functors) of [lo], and the morphisms are the strong such, while the 

algebra-2-cells are the monoidal natural transformations; for the details see [14, 

Section 71 and [16, Section 10.81. 

This theory of clubs is further extended in [13] and [14] to structures borne by 

a family of categories; so that for instance the structure given by two symmetric 

monoidal categories A and B and a symmetric monoidal functor @ : A + B is ex- 

hibited as an algebra for a finitary 2-monad on Cat2. 

A different extension is possible, where P is replaced by the category B of natural 

numbers and braids. Thus Joyal and Street [12] exhibit braid monoidal categories 
as algebras for a 2-monad MO - on Cat, where M is a club in Cat/B. 

6.2. Still in [13] and [14], augmented by [ 151, the notion of club was extended to 

cover certain cases where the structure involved functors, like an internal-horn, of 

mixed variances, although the natural transformations, now of the generalized kind 

introduced by Eilenberg and Kelly in [9], still linked the variables in pairs. P was 

replaced by G, whose objects are finite strings of +‘s and -‘s indicating the 

variances, and whose morphisms are ‘graphs’ showing which variables are linked 

in the natural transformation. Because of the impossibility of composing incom- 

patible natural transformations, Cat/P was replaced, not by Cat/G, but by a full 

subcategory L of the latter. Here L was defined only as a monoidal category, not 
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a monoidal 2-category; and its action as a mere functor 0 : L x Cat, -+ Cat,, where 

Cat, is the mere category underlying Cat. A closer examination shows that we can 

in fact take L to be Gpd-enriched, and o to be a 2-functor L x Cat, + Cat,. With 

this apparatus, it is easy to show that monoidal right-closed categories, or monoidal 

biclosed categories, or symmetric monoidal closed categories, are the algebras for 

a finitary 2-monad T=Mo - on Cat,, where A4 - the corresponding club - is a 

monoid in L. Again there is an extension to structures borne by a family of cate- 

gories; and the structure given by two symmetric monoidal closed categories A and 

B and a symmetric monoidal functor @ : A + B is exhibited as an algebra for a 

finitary %-monad T on Cat:. 

Our failure to exhibit symmetric monoidal closed categories as the algebras for 

a 2-monad on Cat, as distinct from one on Cat,, represents not just a lack of wit, 

but a mathematical fact. If M is the corresponding club, the underlying functor 

Cat, + Cat, of MO - admits of no enrichment to a 2-functor T: Cat + Cat; we 

cannot define T even on the unique 2-cell cr : 0 - 1: 1 + 2. The proof depends on the 

partial coherence result for symmetric monoidal closed categories given by Kelly and 

Mac Lane [26], which - as is shown in [14] - is equally a partial determination of 

the club M, sufficient for our purposes. If we identify the category MO 1 with M, 

the functorsMoO,Mol:M-+Mo2 send mEA4to m(O,...,O> and m(l,...,l> res- 

pectively; if Ta could be defined, its m-component would be a mapf: m(0, . . . , 0) + 

m(1, . . . . 1) in MO 2. Yet if we take m = [l, l] where 1 is the formal identity of the 

club M and [ , ] is the internal horn, there is just no map f: [l, l](O, 0) + [l, l](l, 1) 

in MO 2. For such a map is necessarily of the form g(h, k) where g : [l, l] + [l, l] in 

A4 and h, k are maps in 2. Since the arity of [I, l] is - +, the ‘graph’ of g must be 

either 

_ + _ + 

I I or 

The first of these must be discarded, since there is no map h : 1 + 0 in 2. By the algo- 

rithm given in [26, p. 1291, under the heading “Proof of Theorem 2. l”, there is no 

map g in M with the second graph above. 

Algebra-morphisms between symmetric monoidal closed categories are not things 

that arise much in practice; they can be identified with strong monoidal functors f 
for which the f^: f [a, b] --f [fa, fb], induced by the isomorphism 7: fa @ fb -+ 

f (a @ b), is itself invertible. An algebra-2-cell is just an invertible monoidal natural 

transformation (x : f --f g; the axiom it must satisfy in relation top and g is a conse- 

quence of the one it satisfies in relation to fand 2. Whatever their occurrence in 

practice, such algebra-morphisms are necessary to the general theory; and of course 

they, and in particular the strict ones, are essential to the coherence question “which 

diagrams commute?“, which really comes to an explicit determination of the free 
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algebra F,A = TA, and thus of the 2-monad T, or equivalently, in the present case, 

of the club M. 

6.3. The club idea is not in fact a central one in the study of finitary 2-monads. For 

the simple kinds of structure to which it is applicable, it provides a concrete descrip- 

tion MO - of the 2-monad T, and makes it easy to see, in terms of the generators 

of M, just what the T-algebra-morphisms are. It does in fact extend just a little fur- 

ther, as observed in [13] and [14]; we can replace the Cat/P of Subsection 6.1 by 

Cat/S or by Cat/Sop, where S is the category of natural numbers and functions 

(a skeleton of the category of finite sets). The first of these allows us to deal with 

such a structure as a category with finite coproducts where, in the structural natural 

transformations a -+ CI + b, b + a + 6, a + a + a, 0 + a, the variables are no longer 

linked in pairs, but rather by a function from the variables of the domain to those 

of the codomain; the ‘graphs’ of the four natural transformations above are the two 

functions 1 + 2 in S and the unique functions 2 + 1 and 0 + 1. Another structure 

describable by a club in Cat/S is that of a category A with two symmetric monoidal 

structures 0 and @ and a distributive law 6 : (a@ 6) @ (a 0 c) -+ a @ (b @ c), so 

long as we do not ask 6 to be invertible: the graph of an inverse to 6 would no longer 

be a function. (In spite of this restriction, the idea has proved useful - see [18] - in 

getting partial coherence results even when 6 is invertible.) Categories with finite 

products, on the other hand, are algebras for a 2-monad on Cat given by a club not 

in Cat/S but in Cat/Sop. 

When we come to a category with finite products and finite coproducts, or to a 

category with two symmetric monoidal structures and a distributive law that is an 

isomorphism, or to a category with finite limits, however, we can no longer express 

the 2-monad T as MO - for some kind of club M; it is just no longer true that TA 

is fully determined by M= Tl and some functor r from h4 to some category of 

arities. (This will be pursued more technically in [25] .) To recognize as monadic such 

structures as these, we first need a general analysis of 2-monads on Cat or on Cat,, 

and so on; especially of the finitary ones, which are the most important. 

6.4. Such an analysis must await a later article [27] in this series, but the idea is 

the following. Let ‘V’ be a locally-finitely-presentable closed category in the sense 

of [22], such as Set, Gpd, or Cat, and let X be a locally-finitely-presentable ‘V-cate- 

gory - important examples are Cat,, Cat,, and Cat corresponding to the closed 

categories above, but X might equally well be CatX or [PP, Cat]. Using ‘functor’ to 

mean ‘ wfunctor’ and so on, we have the category [.X,X] of endofunctors of X, 

which is a strict monoidal category with composition as its tensor product; the full 

subcategory given by the finitary endofunctors (those that preserve filtered co- 

limits), being closed under composition, is again monoidal. But this subcategory is 

equivalent to 9 = [Xr,X], where Xr is the small full subcategory of .X given by the 

finitely-presentable objects; for an endofunctor of X is finitary precisely when it is 

the left Kan extension of its restriction to Xr. So 9 too is a monoidal category - 
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in fact a right-closed one - and the category 4 of monoids in 3? is in effect the cate- 

gory of finitary V/-monads on Z and the strict maps of these. The forgetful functor 

Jt! +LE’ is itself finitary and monadic, so that A=R-Alg, for some finitary 

Vmonad R on 2’. 

In a still later article, we shall apply the results of the present one, when W= Cat, 

to the 2-monad R; the 2-category R-Alg is that of finitary 2-monads and pseudo- 
maps; we have the left adjoint ( )‘: R-Alg+ R-Algs, so that pseudo-maps T-t S 

correspond to strict maps T’+ S; in particular, pseudo-actions of T on A cor- 

respond to strict actions of T’, so that pseudo-T-algebras are T’-algebras; there are 

the flexible 2-monads T for which the counit T+ T’ is a surjective equivalence in 

R-Alg,, and sufficient conditions for such flexibility; and so on. 

For our present purposes, however, we return to the previous paragraph and con- 

sider the composite forgetful functor V: J%? + LZ? = [%r,Z] +xX, where X is the set 

of (isomorphism classes of) objects of Zr - that is, the set of finitely-presentable 

objects of YL The conservative functor V has a left adjoint G, given by a simple ex- 

plicit inductive process; and although V is not monadic, the counit of the adjunction 
is a regular epimorphism - whence every TE& has a presentation as the coequa- 

lizer of a parallel pair of maps GQ + GP for some Q, PEYL~. 

Given any such presentation of T, we have the following situation. It turns out 

that to give an action of the %/-monad GP on A EYL is to give, for each x E X, a map 

@Y : px + gwx, A), A > , where the codomain is the cotensor product of Z(x,A) E W 

and A ES. We call P, the Z-object of basic operations of arity x, while (GP), is 

the Z-object of derived operations of arity x; in practice P, - although not of 

course (GP), - is often empty except for a few values of x. We call Q, the Z-object 

of equations of arity x; the parallel pair GQ + GP, or Q + VGP, has (suppressing 

V) the components pxx, wx: Q,- (GP),; again Q, is often empty for all but a few 

values of x. Now to give an action of T on A is to give maps 0, as above whose 

extensions Ox : (GP), -+ {X(x, A), A} to the derived operations satisfy the equations 

B,v~= B,w,. The upshot is that a structure on A is given by the action of a finitary 

-Y-monad if and only if it can be presented in terms of basic operations as above, 

subjected to equations as above between derived operations. 

The meaning of this last statement is explained more concretely by Dubuc and 

Kelly in [S], in the simple case where V= Set and %= Cat,. So armed, they were 

able to prove the monadicity of the forgetful functor to Cat, from the mere category 
of structures and strict morphisms in a variety of cases: categories with finite limits 

or finite colimits or both; Cartesian-closed categories; locally-Cartesian-closed cate- 

gories; elementary toposes or quasi-toposes; elementary toposes with a natural num- 

bers object; and so on. A result of this kind does not suffice, of course, for our 

present purposes, in that it produces only a monad, not a 2-monad; but it is a first 

step - certainly a 2-functor U:.J~? + Cat cannot be monadic unless its underlying 

functor f.J, : do -+ Cat, is so: the enriched situation will be addressed in [27]. By the 

way, disproving monadicity in a particular case may be difficult; Kelly gives in [19] 

some examples of structures borne by a category or a family of categories where 
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U, : ~4~ + Cat: is definitely not monadic, although the structures are certainly 

essentially algebraic - that is, definable by a finite-limit theory. (Note that the ideas 

adumbrated by BCnabou in [3] exhibit as essentially algebraic many structures, such 

as that of a regular category, which seem unlikely to be monadic.) 

In [27] we shall give the details of the analysis above, for a general “Y, but especially 

for V=Cat or Gpd, distinguishing the kinds of operation that give a %-monad on 

Cat or CatX (as is the case for a category with finite limits or colimits or both) 

from those that give only a 2-monad on Cat, or Cat: (as is the case for a Cartesian 

closed category), and describing the various algebra-morphisms in terms of the 

presentation of the theory. 

We shall then have a further list of examples of algebras for a 2-monad on Cat, 

including the following: a category with two symmetric monoidal structures and 

an invertible distributive law (whose 2-monadicity, asserted on heuristic grounds in 

[18], was already established as part of a much wider result in Blackwell’s un- 

published thesis [6]); a pointed category (either with a zero object, or without - the 

two cases correspond to different 2-monads on Cat); an additive category (either 

with finite direct sums, or without); an abelian category. 

6.5. The reader will have noticed that in many of our examples - such as a category 

with finite limits - a T-algebra structure on A EX, if any such exists, is unique to 

within isomorphism; while in many other examples - such as a symmetric monoidal 

category - nothing of the sort is true. In the first case, to admit such a structure 

is but a property of A; yet this is of course no reason to exclude such examples from 

the general theory. Such of our results as the existence in T-Alg of various limits 

and of bicolimits are equally valid and equally important for both kinds of example, 

and are trivial for neither. When it comes to the biadjunction 8, ib l3# : T-Alg + 

,‘$Alg associated to an algebraiG functor 19* : T-Alg, + S-Alg, and hence to a strict 

map 8 : S + T of 2-monads, the two kinds become inextricably mixed. For instance, 

if T-algebras are categories with finite products and S-algebras are symmetric 

monoidal categories, there is an evident algebraic functor IV* sending A to (A, X, l), 

and consequently a map 0 : S -+ T and a left biadjoint 8, to 8#. (The reader should 

note that this 8, admits of no simple explicit description, and observe - perhaps 

with some surprise - that what Fox provides in [ll] is a right biadjoint to this 8#, 

sending a symmetric monoidal A to the category of its commutative coalgebras.) 

Perhaps the earliest explicit description in the literature of such a left biadjoint 8, 

is that of Adelman [l], in the case where T-algebras are abelian categories and 

S-algebras are additive categories with finite direct sums. 

For the moment, at least, we do not know how to distinguish, in terms of a 

presentation of T by operations and equations, those cases in which a T-algebra 

structure is essentially unique; this may well be a hard problem. Accordingly we 

have no precise theorem about algebra-morphisms in such cases. It would seem, 

however, from practical experience with a number of examples, that in these cases 

an algebra-morphism f : (A, a) + (B, 6) is not a map f: A -+ B in LX along with extra 
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data determining theyof Subsection 1.2 - such as the?: fa@fb+f(a@ 6) and the 

f” : I+ fI for monoidal categories - but rather just a mapf: A + B in X with cer- 

tain properties; and that an algebra-2-cell a : f- g is then any 2-cell a : f --, g in X. 

We now expand a little on this. 

There is a notion of quasi-idempotent 2-monad, first recognized and studied by 

Kock [30], with later contributions from Street [35,36] and Zoberlein [37,38]; the 

motivating example for Kock was that where the algebras are categories with limits 

of some specified size; Zoberlein’s first ideas thereon in his thesis [37] seem to have 

been independent of Kock’s; Street has called such 2-monads Kock-ZSberlein 
monads. The 2-monad T on X is quasi-idempotent if m : T2 + T is right adjoint in 

the functor-2-category [X,X] to iT, with identity unit. For such a T, any action 

a : TA + A is right adjoint to iA : A + TA, again with identity unit. Street shows in 

[35, Proposition 41 that, for T-algebras A and B, any f: A + B in X extends to a 

unique colax morphism (f,?) : A + B of algebras, where p: fa --) b. Tf is the mate 

under the adjunctions of the identity iB. f = Tf. iA. If now f = (f,f) : A + B is a mor- 

phism of algebras, (J;f-‘) is a colax morphism, so that f-i must be the unique j; 

above. Accordingly an algebra-morphism f: A + B may be identified with a map 

f: A ---f B inX whose corresponding_?is invertible. It further follows that ifJ g : A --f 
B are two such algebra-morphisms, every 2-cell a : f + g in X is an algebra-2-cell. 

When a T-algebra is a category with limits of some given small class, T is a quasi- 

idempotent 2-monad on Cat; and for a functor f: A + B between T-algebras, the 

unique p above has for its components the canonical comparison-maps f (lim x,) -+ 

lim f(x,) for the various limits involved: so that a T-algebra morphism is a functor 

f that preserves these limits, in the usual sense that the canonical comparison is 

invertible; while all 2-cells between such morphisms are algebra-2-cells. The proof 

of this in the general case must of course await the analysis in [27]; but when the 

given class of limits consists only of finite products, or perhaps only of a terminal 

object, we have so concrete a description of T, in terms of a club in Cat/Sop in the 

language of Subsection 6.3 above, that the verification of these assertions is trivial. 

The extremely simple terminal-object case serves as well as Lex for the counter- 

examples in Subsection 1.3, which show T-Alg to lack equalizers and an initial 

object in general. 
The 2-monad Ton Cat whose algebras are categories with colimits of a given class 

is co-quasi-idempotent; that is, TCo is a quasi-idempotent 2-monad on Catco. Now 

the comparison colim f (xi) + f (colim xi) has the opposite sense; for T-algebras A 
and B, every f: A -+ B in YL underlies a unique lax morphism f: A --f B, which is a 

morphism precisely when the comparison above is invertible. 

When a T-algebra is a category with both finite limits and finite colimits, the 

2-monad Ton Cat is neither quasi-idempotent nor co-quasi-idempotent. Of course 

T is the coproduct, in the 2-category & of finitary 2-monads on Cat, of the 

2-monad P for finite limits and the 2-monad Q for finite colimits; whence it follows 

easily that an algebra-morphism is a functor preserving both the limits and the 

colimits. 
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Cartesian closed categories, like the symmetric monoidal closed categories in Sub- 

section 6.2, are the algebras for a 2-monad T not on Cat but only on Cat,. The 

algebra-morphisms turn out to be those product-preserving functors for which the 

induced map f[a, 6]+ [fa,fb] of internal horns is itself invertible; and any 2-cell in 

Cat, between algebra-morphisms - which is to say, any invertible 2-cell between 

them in Cat - is an algebra-a-cell. We have not yet checked the details for locally- 

Cartesian-closed categories and for elementary toposes; but we have no doubt that 

the algebra-morphisms are once again just those functors that, in the natural sense, 

preserve the structure. 

6.6. Our final example is that foreshadowed in Remark 3.15. Write X for the set 

of objects of the small 2-category W and H: X+ 9 for the inclusion, treating X as 

a discrete 2-category; and let 9 be a cocomplete 2-category. The 2-functor U,= 

[H,~]:[[g:y],[X,~(l=yxsendsa2-functorA:~~~tothefamily(AP1P~X) 

of objects of 9, sends a 2-natural f : A -+B to the family (fp) of its components, 

and sends a modification a : f + g to the family (czp). Since 2 is cocomplete, the 

left Kan extension Lan, provides a left adjoint F, to U,, and so a 2-monad T on 

_@. Colimits in [9,g] being formed pointwise, they are created by U,; hence Us 

is monadic, and T-Alg, is isomorphic to, and may be identified with, [.9,9]. Since 

U, preserves all colimits, so does T; in particular, the 2-monad T is finitary. We 

claim that T-Alg and T-Alg, are respectively Psd [sl, 9?] and Lax [Y, 91 in the sense 

of [23, Section 51; it suffices of course to deal with the lax case, the pseudo case 

then following by restricting to invertible f. 

X being discrete as a 2-category, Lan, is particularly simple to describe, and we 

find at once that T: LZ?x-+9x is given by 

(TA)Q = c PU’,Q)*AP 
PEX 

(6.1) 

for an object A = (AP 1 PEX) of gx, with a corresponding formula for arrows 

and 2-cells; here * is the tensor product of the category .9(P, Q) and the object AP 

of 9. Observe that 

(T24R = c %Q,R)*(TA)Q 
Q 

= pEQ PYQ, RI x W? Q)) *AI’. (6.2) 

It follows easily that the Q-component of iA : A -+ TA arises from (6.1) and the iden- 

tity-map 1 + 9(Q, Q), while the R-component of mA : T2A + TA arises from (6.2) 

and (6.1) and the composition-map sl(Q, R) x P(P, Q) + P(P, R). 

To give an a : TA + A is to give components aQ : (TA)Q = Cp .!Y(P, Q) * AP+ AQ, 

and hence components apQ : .9(P, Q) * AP + AQ, which correspond to components 

ApQ: .9(P, Q) -+ L??(AP, AQ) in Cat. The associativity and identity axioms for an 
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action a assert precisely that the AP and the ApQ constitute a 2-functor A : W--f 9; 

in agreement with our observation above that T-AlgS= [W,L?]. 

Consider now a lax morphism (J;f) : A + B of T-algebras as in (1.1). To give f 
is just to give a family (fp: AP- BP) of arrows in LX?!; to give f is to give a family 

(&) of 2-cells in 9 of the form 

c ~9 (R Q) *.fp 

C q(eQbAp ’ 
P I 

+ ; ~(p,Q)*BP 
I 

aQ UfP 

These in turn have components SpQ : b,, (.Y’(P, Q) * fp) + fpaPQ, which correspond 

to natural transformations fpa as in 

@(P, Q> 
BPQ 

’ gW’,BQ) 

gZ(AP,AQ) 
-%AefQ) 

’ 2'(AP,BQ) 

If we now write fv : By, * fp + fQ. Ay, for the component of yPQ at v, E 9’(P, Q), the 

fp and the fv constitute the data for a lax natural transformation f: A ---f B. One of 

the axioms for a lax natural transformation - the compatibility of fq and fv with 

A/3 and B/l for a 2-cell p : cp + I+V - is exactly the naturality of the.fpQ; the other two 

axioms, that fe, is the pasting-composite off0 and fp, and that fq is the identity 

when cp = l,, are exactly (1.2) and (1.3). Finally, the axiom (1.4) for an algebra- 

2-cell Q : f +g is exactly the assertion that Q is a modification. 
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